plss giúp vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Câu 5:
\(\left\{{}\begin{matrix}x^2+y^2=4\left('\right)\\x-y-xy=2\left(''\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+2xy=4\\x-y-xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+2xy=4\left(1\right)\\2\left(x-y\right)-2xy=4\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right)\) ta được:
\(\left(x-y\right)^2+2\left(x-y\right)=8\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1-9=0\)
\(\Leftrightarrow\left(x-y+1\right)^2-9=0\)
\(\Leftrightarrow\left(x-y-2\right)\left(x-y+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=2\\x-y=-4\end{matrix}\right.\)
Với \(x-y=2\) Thay vào \(\left(''\right)\) ta được:
\(2-xy=2\Rightarrow xy=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\y=0\Rightarrow x=2\end{matrix}\right.\)
Với \(x-y=4\Rightarrow x=4+y\) Thay vào \(\left('\right)\) ta được:
\(\left(4+y\right)^2+y^2=4\)
\(\Leftrightarrow y^2+8y+16+y^2-4=0\)
\(\Leftrightarrow2y^2+8y+12=0\)
\(\Leftrightarrow y^2+4y+6=0\)
\(\Leftrightarrow\left(y+2\right)^2+2=0\) (phương trình vô nghiệm).
Vậy hệ phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(2;0\right),\left(0;-2\right)\right\}\)
Câu 6: \(\left\{{}\begin{matrix}2xy+y^2=3\left('\right)\\x^2+5xy=6\left(''\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4xy+2y^2=6\left(1\right)\\x^2+5xy=6\left(2\right)\end{matrix}\right.\)
Lấy \(\left(2\right)-\left(1\right)\) ta được:
\(x^2+xy-2y^2=0\)
\(\Leftrightarrow x^2-y^2+xy-y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
Với \(x=y\) Thay vào \(\left('\right)\) ta được:
\(2y.y+y^2=3\)
\(\Leftrightarrow y=\pm1\Rightarrow x=\pm1\).
Với \(x=-2y\) Thay vào \(\left('\right)\) ta được:
\(2.\left(-2y\right).y+y^2=3\)
\(\Leftrightarrow y^2=-1\) (phương trình vô nghiệm)
Vậy hệ phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(1;1\right),\left(-1;-1\right)\right\}\)

Olm chào em, em nên viết đề bài bằng công thức toán học để thầy cô, bạn bè hiểu đúng yêu cầu đề bài, em nhé. Có như vậy mọi người mới trợ giúp em được tốt nhất. Cảm ơn em đã đồng hành cùng Olm.
Ta có: \(C=\left(-3\right)+\left(-3\right)^2+\left(-3\right)^3+\cdots+\left(-3\right)^{200}\)
=>\(\left(-3\right)C=\left(-3\right)^2+\left(-3\right)^3+\left(-3\right)^4+\cdots+\left(-3\right)^{201}\)
=>\(-3C-C=\left(-3\right)^2+\left(-3\right)^3+\cdots+\left(-3\right)^{201}-\left(-3\right)-\left(-3\right)^2-\cdots-\left(-3\right)^{200}\)
=>\(-4C=\left(-3\right)^{201}-\left(-3\right)=-3^{201}+3\)
=>\(4C=3^{201}-3\)
=>\(C=\frac{3^{201}-3}{4}\)



1: Ta có: AG=2/3AD
GM=GD+DM=2GD=2/3AD
Do đó: AG=GM
hay G là trung điểm của AM
3: Xét tứ giác BGCM có
D là trung điểm của BC
D là trung điểm của GM
Do đó: BGCM là hình bình hành
Suy ra: BG=CM

1: AD=8-2=6cm
AD/AB=6/8=3/4
AE/AC=9/12=3/4
=>AD/AB=AE/AC
2: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
3: AI là phân giác
=>IB/IC=AB/AC
=>IB/IC=AD/AE
=>IB*AE=AD*IC


a: \(VT=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\dfrac{\sqrt{7}+\sqrt{5}}{2}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)=\dfrac{7-5}{2}=\dfrac{2}{2}=1\)
=VP
b: \(VT=3-\sqrt{5}+2\left(\sqrt{5}+1\right)-\left|\sqrt{5}-2\right|\)
=3-căn 5+2căn 5+2-căn 5+2
=3+2+2=7
=VP
Ta có sơ đồ:
Theo sơ đồ ta có:
Đáy bé của mảnh đất hình thang là: 100 : (2 + 3) x 2 = 40 (m)
Chiều cao của mảnh đất hình thang là: 40 + 20 = 60 (m)
Diện tích của mảnh đất hình thang là: 100 x 60 : 2 = 3000 (m2)
Mỗi mét vuông thu được số ki-lô-gam táo là: 70 : 100 = \(\dfrac{7}{10}\) (kg)
Cả mảnh đất thu được số ki-lô-gam táo là: \(\dfrac{7}{10}\) x 3000 = 2100 (kg)
2100 kg = 21 tạ
Đs...
à làm dễ lắm chỉ cần á dụng công thức thôi.