cho M= 1/12+1/22+1/32+...1/20232 . Chứng minh M khôn phải số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
ý mình là c/m như thế nào cơ? Bạn làm đầy đủ cho mình nhé!
+TH1: \(M>1\)
Ta có: \(\frac{3}{10}>\frac{3}{15}=\frac{1}{5}\)
\(\frac{3}{11}>\frac{3}{15}=\frac{1}{5}\)
\(\frac{3}{12}>\frac{3}{15}=\frac{1}{5}\)
\(\frac{3}{13}>\frac{3}{15}=\frac{1}{5}\)
\(\frac{3}{14}>\frac{3}{15}=\frac{1}{5}\)
\(\Rightarrow M=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=5.\frac{1}{5}=1\)
\(\Rightarrow M>1\) 1
+TH2: \(M< 2\)
Ta có: \(\frac{3}{10}< \frac{3}{9}=\frac{1}{3}\)
\(\frac{3}{11}< \frac{3}{9}=\frac{1}{3}\)
\(\frac{3}{12}< \frac{3}{9}=\frac{1}{3}\)
\(\frac{3}{13}< \frac{3}{9}=\frac{1}{3}\)
\(\frac{3}{14}< \frac{3}{9}=\frac{1}{3}\)
\(\Rightarrow M=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}=\frac{5}{3}< \frac{6}{3}=2\)
\(\Rightarrow M< 2\) 2
Từ 1 và 2 \(\Rightarrow1< M< 2\)hay M không phải là số tự nhiên
M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)
M = \(\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2023.2023}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
\(\dfrac{1}{4.4}\) < \(\dfrac{1}{3.4}\)
..................
\(\dfrac{1}{2023.2023}\) < \(\dfrac{1}{2022.2023}\)
Cộng vế với vế ta có:
M < 1 + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)
M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
M < 2 - \(\dfrac{1}{2023}\) < 2 (2)
Kết hợp (1) và (2) ta có:
1 < M < 2
Vậy M không phải là số tự nhiên.
M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)
M = \(\dfrac{1}{1.1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{2023.2023}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
Cộng vế với vế ta có:
M < 1 + \(\dfrac{1}{1.2}\) +\(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)
M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
M < 2 - \(\dfrac{1}{2023}\) < 2 (2)
Kết hợp (1) và (2) ta có: 1 < M < 2
Vậy M không phải là số tự nhiên.