Cho điểm A nằm ngoài đường thẳng d và cách d môt khoảng 2 cm. Lấy điểm B bất kì thuộc đường thẳng d. Gọi C là điểm thuộc tia đối của tia BA sao cho BC = Ba. Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 sử dụng tính chất góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung là xong nhé
kẻ IK vuông góc với DG và DG cắt đường tròn ngoại tiếp tam giác DFM tại P ==> P là điểm chính giữa cung DF
vì IG vuông góc với DC==> IG // BC
do đó giờ cần chứng minh góc DIG=DBC ( 2 góc đồng vị là ra D;I;B thẳng hàng)
ta có góc DIG=cung DP
góc DMF=1/2cung DF
MÀ cung DP=1/2cung DF( VÌ P là ĐIỂM CHÍNH GIỮA CUNG DF)
==> DIG=DMF
mà góc DMF=DMC( 2 góc nội tiếp cùng chắn 1 cung)
==> góc DIP=DBC
mà DBC+GIB=180 độ==> DIG+GIB=180 độ
==> D;I;B thẳng hàng
a)fac=amo,emo=fca=90 =>efm=emf=>em=ef
b)*dci+dic+idc+ibc+icb+cib=360 mà dci+icb=90;idc+ibc=90 =>dic+cib=180 =>3 diem thang hang
dci+idc+dic=180;cib+icb+ibc=180
*abi=cung ad/2 mà c ko doi =>d ko doi=>ad ko doi=>abi ko doi
bạn nhầm đề bài rồi!
xy vuông góc với OA thì đường thẳng qua B vuông góc với OC(hay xy) thì không thể cắt được
Cho điểm A nằm ngoài đường thẳng d và có khoảng cách đến d bằng 2cm. lấy điểm B bất kì thuộc đường thằng d. Gọi C là điểm đối xứng với điểm A qua điểm B. Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào ?
Bài giải:
Kẻ AH và CK vuông góc với d.
Ta có AB = CB (gt)
= ( đối đỉnh)
nên ∆AHB = ∆CKB (cạnh huyền - góc nhọn)
Suy ra CK = AH = 2cm
Điểm C cách đường thẳng d cố định một khoảng cách không đổi 2cm nên C di chuyển trên đường thẳng m song song với d và cách d một khoảng bằng 2cm.
có đúng ko vậy?