Chứng minh H = 3/10+3/11+3/12+3/13+3/14 ko là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s=3/10+3/11+3/12+3/13+3/14>3/15+3/15+3/15+3/15+3/15=1 mak3/15+3/15+3/15+3/15+3/15<3/10+3/10+3/10+3/10+3/10<20/10=2
=>1<S<2=>s ko fải stn
CHÚC BẠN HK TỐT
SAI THÌ MK SR NHA^^
+TH1: \(M>1\)
Ta có: \(\frac{3}{10}>\frac{3}{15}=\frac{1}{5}\)
\(\frac{3}{11}>\frac{3}{15}=\frac{1}{5}\)
\(\frac{3}{12}>\frac{3}{15}=\frac{1}{5}\)
\(\frac{3}{13}>\frac{3}{15}=\frac{1}{5}\)
\(\frac{3}{14}>\frac{3}{15}=\frac{1}{5}\)
\(\Rightarrow M=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=5.\frac{1}{5}=1\)
\(\Rightarrow M>1\) 1
+TH2: \(M< 2\)
Ta có: \(\frac{3}{10}< \frac{3}{9}=\frac{1}{3}\)
\(\frac{3}{11}< \frac{3}{9}=\frac{1}{3}\)
\(\frac{3}{12}< \frac{3}{9}=\frac{1}{3}\)
\(\frac{3}{13}< \frac{3}{9}=\frac{1}{3}\)
\(\frac{3}{14}< \frac{3}{9}=\frac{1}{3}\)
\(\Rightarrow M=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}=\frac{5}{3}< \frac{6}{3}=2\)
\(\Rightarrow M< 2\) 2
Từ 1 và 2 \(\Rightarrow1< M< 2\)hay M không phải là số tự nhiên
Ta có : P > 3/15 + 3/15 + 3/15 + 3/15 + 3/15 = 15/15 = 1
P > 3/10 + 3/10 + 3/10 + 3/10 + 3/10 = 15/10 < 20/10 = 2
=> 1 < P < 2
Vậy P ko phải là số tự nhiên
Ta có:
\(H=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}\)
\(\Rightarrow H=\dfrac{15}{10}< 2\)
\(H=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}\)
\(H>\dfrac{15}{14}>\dfrac{14}{14}=1\)
\(\Rightarrow1< H< 2\)
\(\Rightarrow\) H nằm giữa 2 số tự nhiên liên tiếp nên H không là số tự nhiên
H = \(\dfrac{3}{10}\) + \(\dfrac{3}{11}\) + \(\dfrac{3}{12}\) + \(\dfrac{3}{13}\) + \(\dfrac{3}{14}\); cm H không phải là số tự nhiên
Ta có \(\dfrac{3}{10}\) > \(\dfrac{3}{11}\) > \(\dfrac{3}{12}\) > \(\dfrac{3}{13}\)> \(\dfrac{3}{14}\)
⇒ \(\dfrac{3}{14}\) \(\times\) 5 < \(\dfrac{3}{10}\) + \(\dfrac{3}{11}\) + \(\dfrac{3}{12}\) + \(\dfrac{3}{13}\) + \(\dfrac{3}{14}\) < \(\dfrac{3}{10}\) x 5
\(\dfrac{15}{14}\) < H < \(\dfrac{15}{10}\)
1 < H < 2
Nên H không phải là số tự nhiên vì không có số tự nhiên nào đứng giữa hai số tự nhiên liên tiếp.