9. Cho PQR vuông tại P (PQ < PR). Vẽ QI là tia phân giác của góc PQR. Kẻ IH ⊥ QR
(H QR).
a) Chứng minh PQI = HQI b) Chứng minh IQ là tia phân giác của góc PIH
c) Chứng minh PH ⊥ QI
d) Trên tia đối của tia PQ lấy điểm K sao cho PK = HR. Chứng minh 3 điểm H, I, K thẳng
hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác PQH và tam giác PRH có :
\(PQ=PR\left(gt\right)\)
\(PH\)chung
\(QH=RH\left(gt\right)\)
\(=>\) Tam giác PQH = tam giác PRH (c-c-c)
b, Ta có tam giác PQR cân tại P và có đường trung tuyến PH
Suy ra PH là đường trung tuyến đồng thời là đường cao
\(=>PH\perp QR\)
c,Ta có : \(\hept{\begin{cases}QH=RH\\KH=PH\end{cases}}\)
\(=>\)Tứ giác PQKR là hình bình hành
\(=>\)\(RK=PQ\)
Mà theo giả thiết : \(PQ=PR\)
Suy ra : \(PR=PK\)
Bạn tự vẽ hình
`a)`Xét tam giác MNP cân có:MI là trung tuyến
`=>` MI là đường cao
`=>MI bot NP`
`b)` Xét tam giác vuông MIQ và tam giác vuông MIK có:
`MI` chung
`hat{NMI}=hat{PMI}`
`=>DeltaMIQ=DeltaMIK(ch-gn)`
`=>IQ=IK(1)`
`DeltaMIQ=DeltaMIK(ch-gn)`
`=>MQ=MK(2)`
`(1)(2)=>IM` là trung trực QK
a) Xét ΔABI và ΔACI có
AB=AC(ΔABC cân tại A)
AI chung
BI=CI(I là trung điểm của BC)
Do đó: ΔABI=ΔACI(c-c-c)
nên \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
mà tia AI nằm giữa hai tia AB,AC
nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)
b) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: IB=IC(I là trung điểm của BC)
nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AI là đường trung trực của BC
hay AI\(\perp\)BC(đpcm)
c) Xét ΔIHB vuông tại H và ΔIKC vuông tại K có
IB=IC(I là trung điểm của BC)
\(\widehat{HBI}=\widehat{KCI}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔIHB=ΔIKC(cạnh huyền-góc nhọn)
nên IH=IK(hai cạnh tương ứng)
d) Xét ΔABI vuông tại I và ΔDCI vuông tại I có
IB=IC(I là trung điểm của BC)
IA=ID(gt)
Do đó: ΔABI=ΔDCI(hai cạnh góc vuông)
nên \(\widehat{ABI}=\widehat{DCI}\)(hai góc tương ứng)
mà \(\widehat{ABI}\) và \(\widehat{DCI}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔAHE có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AB là phân giác của góc HAE và AE=AH
Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHF cân tại A
=>AC là phân giác của góc HAF và AH=AF
=>AE=AF
Xét ΔAHM và ΔAEM có
AH=AE
góc HAM=góc EAM
AM chung
=>ΔAHM=ΔAEM
=>góc AHM=góc AEM
Xét ΔAHN và ΔAFN có
AH=AF
góc HAN=góc FAN
AN chung
=>ΔAHN=ΔAFN
=>góc AHN=góc AFN
=>góc AHN=góc AHM
=>HA là phân giác của góc MHN
b: Xét ΔHEF có HI/HE=HK/HF
nên IK//EF
=>IK//MN
GT | △MNP cân tại P. MN = 6cm, NPI = MPI = NPM/2 , (I MN) IK ⊥ PM , IH ⊥ PN . IQ = IM |
KL | a, △MPI = △NPI b, HIP = PIK c, △MIQ vuông cân. MQ = ? d, Nếu PKH đều, điều kiện △MNP |
Bài làm:
a, Vì △MNP cân tại P => PN = PM
Xét △NPI và △MPI
Có: NP = MP (gt)
NPI = MPI (gt)
PI là cạnh chung
=> △NPI = △MPI (c.g.c)
b, Xét △HPI vuông tại H và △KPI vuông tại K
Có: PI là cạnh chung
HPI = KPI (gt)
=> △HPI = △KPI (ch-gn)
=> HIP = PIK (2 góc tương ứng)
Mà IP nằm giữa IH, IK
=> IP là phân giác KIH
c, Ta có: PIN = MIQ (2 góc đối đỉnh)
Mà PIN = 90o (gt)
=> MIQ = 90o (1)
Xét △MIQ có: IQ = IM => △MIQ cân tại I (2)
Từ (1), (2) => △MIQ vuông cân tại I
Vì △NPI = △MPI (cmt)
=> IN = IM (2 cạnh tương ứng)
Mà MN = IN + IM = 6 (cm)
=> IN = IM = 6 : 2 = 3 (cm)
Mà IM = IQ
=> IM = IQ = 3 (cm)
Xét △MIQ vuông tại I có: IQ2 + IM2 = MQ2 (định lý Pitago)
=> 32 + 32 = MQ2
=> 9 + 9 = MQ2
=> 18 = MQ2
=> MQ = \(\sqrt{18}=3\sqrt{2}\)
d, Để △PHK đều <=> HPK = PKH = KHP = 60o
=> △MNP có NPM = 60o mà △MNP cân
=> △MNP đều
Vậy để △PKH đều <=> △MNP đều
a/
Xét tg vuông PQI và tg vuông HQI có
QI chung
\(\widehat{PQI}=\widehat{HQI}\left(gt\right)\)
=> tg PQI = tg HQI (hai tg vuông có cạnh huyền và 1 góc nhọn bằng nhau)
c/
Xét tg PQH có
tg PQI = tg HQI (cmt) => PQ=HQ => th PQH cân tại Q
\(\widehat{PQI}=\widehat{HQI}\left(gt\right)\)
\(\Rightarrow PH\perp QI\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
d/
Xét tg QKR có
PQ=HQ (cmt)
PK=HR (gt)
=> PQ+PK=HQ+HR => QK=QR => tg QKR cân tại Q
\(\widehat{PQI}=\widehat{HQI}\left(gt\right)\)
\(\Rightarrow QI\perp KR\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
Ta có
\(RP\perp QK\)
\(\Rightarrow KI\perp QR\) (trong tg 3 đường cao đồng quy)
Mặt khác \(IH\perp QR\left(gt\right)\)
=> H; I; K thẳng hàng (Từ 1 điểm ngoài đường thẳng cho trước chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho)