\(\frac{x+1}{2013}+\frac{x+1}{2014}+\frac{x+1}{2015}=\frac{x+1}{2016}+\frac{x+1}{2017}\)
t đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2013}+\frac{x+1}{2014}+\frac{x+1}{2015}=\frac{x+1}{2016}+\frac{x+1}{2017}\)
t đg cần gấp
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\Leftrightarrow\) \(\frac{x+1}{2018}+1+\frac{x+2}{2017}+1+\frac{x+3}{2016}+1=\frac{x+4}{2015}+1+\frac{x+5}{2014}+1+\frac{x+6}{2013}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}=\frac{x+2019}{2015}+\frac{x+2019}{2014}+\frac{x+2019}{2013}\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}-\frac{x+2019}{2015}-\frac{x+2019}{2014}-\frac{x+2019}{2013}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)\)\(=0\)
Lại có: \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\) \(\ne\) \(0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=0-2019=-2019\)
Vậy x= -2019
Bài 3 :
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)
Nên \(x-2017=0\)
\(\Rightarrow\)\(x=2017\)
Vậy \(x=2017\)
Chúc bạn học tốt ~
Bài 1 :
\(\left(8x-5\right)\left(x^2+2014\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{5}{8}\)
Chúc bạn học tốt ~
\(\Leftrightarrow\left(\frac{x+4}{2013}+1\right)+\left(\frac{x+3}{2014}+1\right)=\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+1}{2016}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\ne0\)
\(\Rightarrow x+2017=0\Rightarrow x=-2017\)
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(\frac{x+2}{2013}+\frac{x+1}{2014}=\frac{x}{2015}+\frac{x-1}{2016}\)
\(\Leftrightarrow\)\(\frac{x+2}{2013}+1+\frac{x+1}{2014}+1=\frac{x}{2015}+1+\frac{x-1}{2016}+1\)
\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2014}=\frac{x+2015}{2015}+\frac{x+2015}{2016}\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
Do\(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}>0\)
=>x+2015=0
<=>x=-2015
=> \(\frac{x+2015-2013}{2013}+\frac{x+2015-2014}{2014}=\frac{x+2015-2015}{2015}+\frac{x+2015-2016}{2016}\)
<=> \(\frac{x+2015}{2013}-1+\frac{x+2015}{2014}-1=\frac{x+2015}{2015}-1+\frac{x+2015}{2016}-1\)
<=> \(\frac{x+2015}{2013}+\frac{x+2015}{2014}-\frac{x+2015}{2015}-\frac{x+2015}{2016}=0\)
<=> \(\left(x+2015\right).\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
<=> x + 2015 = 0 Vì \(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\ne0\)
<=> x = -2015
\(\frac{x+2}{2015}+\frac{x+1}{2016}=\frac{x+3}{2014}+\frac{x+4}{2013}\)
=> \(\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+1}{2016}+1\right)=\left(\frac{x+3}{2014}+1\right)+\left(\frac{x+4}{2013}+1\right)\)
=> \(\frac{x+2017}{2015}+\frac{x+2017}{2016}=\frac{x+2017}{2014}+\frac{x+2017}{2013}\)
=> (x + 2017)(1/2015 + 1/2016 - 1/2014 - 1/2013) = 0
=> x + 2017 = 0
=> x = -2017
\(\frac{x+2}{2015}+\frac{x+1}{2016}=\frac{x+3}{2014}+\frac{x+4}{2013}\)
\(\Leftrightarrow\frac{x+2}{2015}+1+\frac{x+1}{2016}+1=\frac{x+3}{2014}+1+\frac{x+4}{2013}+1\)
\(\Leftrightarrow\frac{x+2017}{2015}+\frac{x+2017}{2016}=\frac{x+2017}{2014}+\frac{x+2017}{2013}\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Dễ thấy cái ngoặc to < 0
=> x=-2017
\(\frac{x+1}{2016}-\frac{x+2}{2015}=\frac{x+2017}{2014}\)
\(\frac{x+1+2016}{2016}-\frac{x+2+2015}{2015}-\frac{x+2017}{2014}=0\)
\(\frac{x+2017}{2016}-\frac{x+2017}{2015}-\frac{x+2017}{2014}=0\)
\(\left(x+2017\right)\left(\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)=0\)
Vì \(\left(\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\ne0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
x=-1
Ngắn gọn, k nhé