K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

ỳuyfuỳgugtti\(\text{kl_{ }kkj_{ }p}'_{o'^2'l;}\)

22 tháng 10 2017

Giải:

Theo đề ra, ta có:

\(x^3+y^3=4021\left(x^2-xy+y^2\right)\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow4021\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow x+y=4021\) (1)

Mà theo giả thiết ta có: \(x-y=1\) (2)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=\left(4021+1\right):2\\y=\left(4021-1\right):2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)

Vậy x = 2011 và y = 2010.

Chúc bạn học tốt!

22 tháng 10 2017

Trần Quốc Lộc, Hung nguyen, Gia Hân Ngô, Phạm Hoàng Giang, Toshiro Kiyoshi, @Aki Tsuki, @Trương Tú Nhi, ...

Câu 3:

a: A(x)=x^3+3x^2-4x-12

B(x)=x^3-3x^2+4x+18

A(x)+B(x)

=x^3+3x^2-4x-12+x^3-3x^2+4x+18

=2x^3+6

A(x)-B(x)

=x^3+3x^2-4x-12-x^3+3x^2-4x-18

=6x^2-8x-30

b: A(-2)=(-8)+3*4-4*(-2)-12

=-20+3*4+4*2=0

=>x=-2 là nghiệm của A(x)

B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10

=>x=-2 ko là nghiệm của B(x)

 

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$

$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$

$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$

$\Leftrightarrow 13x+15=2$

$\Leftrightarrow 13x=2-15=-13$

$\Leftrightarrow x=-13:13=-1$

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Bài 2:

$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:

$(y+4)y=5$

$\Leftrightarrow y^2+4y-5=0$

$\Leftrightarrow (y-1)(y+5)=0$

$\Leftrightarrow y=1$ hoặc $y=-5$

Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$

Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$\frac{x}{y}=\frac{3}{2}\Rightarrow x=\frac{3}{2}y$

$\frac{1}{xy}=6$

$\Rightarrow xy=\frac{1}{6}$

$\Rightarrow \frac{3}{2}y.y=\frac{1}{6}$

$\Rightarrow y^2=\frac{1}{9}=(\frac{1}{3})^2=(\frac{-1}{3})^2$

Vì $y<0$ nên $y=\frac{-1}{3}$

$x=\frac{3}{2}y=\frac{3}{2}.\frac{-1}{3}=\frac{-1}{2}$

Mà $\frac{-1}{2}< \frac{-1}{3}$ nên  loại (do $x> y$)

Vậy không tồn tại $x,y$ thỏa mãn đề.

26 tháng 2 2021

Từ x + y  = 2 => x = 2 - y thay vào xy - z2 = 1

Ta có: \(\left(2-y\right)y-z^2=1\)

<=> \(z^2+y^2-2y+1=0\)

<=> \(z ^2+\left(y-1\right)^2=0\)

<=> \(\left\{{}\begin{matrix}z=0\\y=1\end{matrix}\right.\) => x = 2 - 1 = 1

Vậy x = y = 1 và z = 0