K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1

c.

Từ M kẻ \(MH\perp SC\) (H thuộc SC)

\(\Rightarrow H\in\left(\alpha\right)\Rightarrow\) thiết diện là tam giác BMH

Do \(\left\{{}\begin{matrix}BM\perp\left(SAC\right)\\MH\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow BM\perp MH\Rightarrow\Delta BMH\) vuông tại M

Trong tam giác vuông ABC: \(BM=\dfrac{1}{2}AC=a\) (trung tuyến ứng với cạnh huyền)

Hai tam giác vuông CHM và CAS đồng dạng (chung góc C)

\(\Rightarrow\dfrac{MH}{SA}=\dfrac{CM}{SC}\Rightarrow MH=\dfrac{SA.CM}{SC}=\dfrac{SA.\dfrac{AC}{2}}{\sqrt{SA^2+AC^2}}=\dfrac{a\sqrt{5}}{5}\)

\(\Rightarrow S_{BMH}=\dfrac{1}{2}BM.MH=\dfrac{a^2\sqrt{5}}{10}\)

28 tháng 3 2017

30 tháng 3 2017

6 tháng 10 2018

13 tháng 8 2021

undefined

3 tháng 5 2018

4 tháng 3 2019

12 tháng 8 2018