Cho phương trình `x^2- 4x + 3 = 0 ` có hai nghiệm phân biệt `x_1,x_2 `. Không giải phương trình, hãy tính giá trị của biểu thức : `\sqrt{x_1}+``\sqrt{x_2}`
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)
Theo đề:
\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)
\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)
Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))
Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)
\(\Leftrightarrow4m^2+12m+21>0\)
\(\Leftrightarrow4m^2+12m+9+12>0\)
<=> \(\left(2m+3\right)^2+12>0\)
Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)
Theo đề:
\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))
=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)
<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)
=> \(M\ge2\).
Dấu "=" xảy ra khi m = 0
Thế m = 0 vào phương trình ở đề được:
\(x^2-5x+1=0\)
Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.
Vậy min M = 2 và m = 0
☕T.Lam
(căn x1+căn x2)^2=x1+x2+2*căn x1x2
=12+2*căn 4=16
=>căn x1+căn x2=4
\(T=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}=\dfrac{12^2-2\cdot4}{4}=34\)
\(x^2-4x-6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)
=>Phương trình này có hai nghiệm phân biệt
Theo vi-et, ta có:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4^2-2\cdot\left(-6\right)=16+12=28\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)
\(C=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)
\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)
\(D=\left|x_1-x_2\right|\)
\(=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{5}{2}\\x_1x_2=\frac{c}{a}=-\frac{3}{2}\end{cases}}\)
Khi đó : A = ( x1 + 2x2 )( x2 + 2x1 ) = x1x2 + 2x12 + 2x22 + 4x1x2
= 5x1x2 + 2( x1 + x2 )2 - 4x1x2
= 2( x1 + x2 )2 + x1x2 = 2.(5/2)2 - 3/2 = 11
Câu 1
a) Xét phương trình : 2x2 +5x - 8 = 0
Có \(\Delta=5^2-4.2.\left(-8\right)=89>0\)
=> Phương trình luôn có 2 nghiệm phân biệt x1, x2
b) Do phương trình luôn có 2 nghiệm x1,x2
=> Theo định lí viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{2}\\x_1.x_2=-4\end{matrix}\right.\)
A = \(\dfrac{2}{x_1}+\dfrac{2}{x_2}=\dfrac{2.x_2}{x_1x_2}+\dfrac{2x_1}{x_1x_2}=\dfrac{2\left(x_1+x_2\right)}{x_1x_2}=\dfrac{2.\left(-\dfrac{5}{2}\right)}{-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)
Vậy A = \(\dfrac{5}{4}\)
Câu 2
Ta có \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{x}+2}+\dfrac{4-a}{2-\sqrt{a}}\left(a\ge0;a\ne4\right)\)
\(=\dfrac{\left(2+\sqrt{a}\right)^2}{2+\sqrt{a}}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\)
\(=\sqrt{a}+2+\left(2+\sqrt{a}\right)=2\sqrt{a}+4\)
Vậy P = \(2\sqrt{a}+4\left(a\ge0;a\ne4\right)\)
b) Ta có a2 - 7a + 12 = 0
\(\Leftrightarrow a^2-4a-3a+12=0\)
\(\Leftrightarrow a\left(a-4\right)-3\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a-3\right)=0\Leftrightarrow\left[{}\begin{matrix}a=4\left(loại\right)\\a=3\end{matrix}\right.\)
Với a = 3 thay vào P ta được P = \(2\sqrt{3}+4\)
\(\Rightarrow\sqrt{P}=\sqrt{2\sqrt{3}+4}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Vậy \(\sqrt{P}=\sqrt{3}+1\) tại a2 -7a + 12 =0
Ta nhận thấy tổng các hệ số của pt bậc 2 đã cho là \(1-a+a-1=0\) nên pt này có 1 nghiệm là 1, nghiệm kia là \(a-1\), nhưng do không được giải pt nên ta sẽ làm theo cách sau:
Ta thấy pt này luôn có 2 nghiệm phân biệt. Theo hệ thức Viète:
\(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
Vậy, \(M=\dfrac{3\left(x_1^2+x_2^2\right)-3}{x_1x_2\left(x_1+x_2\right)}\)
\(M=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3}{a\left(a-1\right)}\)
\(M=\dfrac{3\left(a^2-2\left(a-1\right)\right)-3}{a\left(a-1\right)}\)
\(M=\dfrac{3\left[\left(a-1\right)^2-1\right]}{a\left(a-1\right)}\)
\(M=\dfrac{3a\left(a+2\right)}{a\left(a-1\right)}\)
\(M=\dfrac{3a+6}{a-1}\)
b) Ta có \(P=\left(x_1+x_2\right)^2-2x_1x_2=a^2-2\left(a-1\right)=\left(a-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=1\). Vậy để P đạt GTNN thì \(a=1\)
\(x^2-4x+3=0\)
Theo vi-et, ta có: \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Đặt \(A=\sqrt{x_1}+\sqrt{x_2}\)
=>\(A^2=x_1+x_2+2\sqrt{x_1x_2}\)
=>\(A^2=4+2\cdot\sqrt{3}\)
=>\(A=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)