Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Để pt có ng0 thì: \(\Delta'=\left(2m+5\right)^2-2m-1>0\)
\(\Leftrightarrow4m^2+2m+24>0\left(LĐ\right)\)
Theo Viet:\(x_1+x_2=4m+10;x_1x_2=2m+1\)
\(A^2=\left|x_1\right|+\left|x_2\right|-2\sqrt{x_1x_2}\)
\(A^2=\left|x_1\right|+\left|x_2\right|-2\sqrt{2m+1}\)
\(A^2=\sqrt{\left(x_1+x_2\right)^2}-2\sqrt{2m+1}\)
\(A^2=\sqrt{\left(4m+10\right)^2}-2\sqrt{2m+1}\)
Đến đây thì dễ rồi.
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)
\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)
Dấu ''='' xảy ra khi m = -1
Vậy GTNN A là 4 khi m =-1
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)
PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)
=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m
Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)
Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)
Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)
\(\Leftrightarrow4m^2+12m+21>0\)
\(\Leftrightarrow4m^2+12m+9+12>0\)
<=> \(\left(2m+3\right)^2+12>0\)
Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)
Theo đề:
\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))
=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)
<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)
=> \(M\ge2\).
Dấu "=" xảy ra khi m = 0
Thế m = 0 vào phương trình ở đề được:
\(x^2-5x+1=0\)
Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.
Vậy min M = 2 và m = 0
☕T.Lam