xác định (d):y=ax+b trong các TH:
a) (d)//(d'):y=-3x - `2/3` và đi qua điểm A(-2;-4)
b) (d) đi qua điểm B và có hệ số góc là -3. Biết B là giao điểm của (d''):y=2x-2 với trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Vì (d1)//(d3) nên a=1
hay (d1): y=x+b
Thay x=2 và y=3 vào (d1), ta được:
b+2=3
hay b=1
a và b thỏa mãn hệ phương trình :
c và d thỏa mãn hệ phương trình:
\(\left(d\right)//\left(d_1\right):y=\dfrac{2}{3}x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b\ne1\end{matrix}\right.\)
Ta có: (d) cắt trục hoành tại điểm có hoành độ là 3
\(\Rightarrow A\left(3;0\right)\in\left(d\right)\Leftrightarrow y_A=ax_A+b\)
\(\Leftrightarrow0=3.\dfrac{2}{3}+b\Leftrightarrow b=-2\)
Vậy \(\left(d\right):y=\dfrac{2}{3}x-2\)
a, Vẽ đồ thị hàm số y = 2x - 4
- Giao đồ thị với trục Ox là điểm có tung độ bằng 0 ; y = 0
=> 2x - 4 = 0 => x = 4/2 => x= 2
Đồ thị cắt trục hành tại A ( 2; 0)
- Giao đồ thị với trục Oy là điểm cs hoành độ bằng 0 ; x = 0
=> y = 0-4 = -4
Đồ thị cắt trục tung tại B ( 0; -4)
Tính khoảng cách từ điểm O đến đt (d) : y = 2x - 4
=> 2x - 4 - y = 0
=> 2x - y - 4 = 0 (d1)
Khoảng cách từ O đến d chính là khoảng cách từ O đến (d1)
Điểm O(0 ;0)
d(0; d1) = \(\dfrac{|2.0-0-4|}{\sqrt{2^2+1^1}}\)
d(O; d1) = \(\dfrac{4}{\sqrt{5}}\) = \(\dfrac{4\sqrt{5}}{5}\)
b, phương trình đt d' có dạng : ax + b
d'//d \(\Leftrightarrow\) a = 2; b # -4
Phương trình đt d' có dạng : 2x + b
Vì d' đi qua A ( 0; 3) nên tọa độ điểm A thỏa mãn pt đường thẳng d.
Thay tọa độ điểm A vào pt đt d' ta có :
2. 0 + b = 3
0 + b = 3
b = 3
vậy các hệ số a; b của đt d' song song với d và đi qua A( 0; 3) lần lượt là : 2; 3
\(\Leftrightarrow\left\{{}\begin{matrix}a=-3;b\ne2\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=9\end{matrix}\right.\Leftrightarrow y=-3x+9\)
a: Thay x=1 vàp (P),ta được:
y=-1^2=-1
Thay x=2 vào (P), ta được:
y=-2^2=-4
Vì (d) đi qua A(1;-1) và B(2;-4) nên ta có hệ:
a+b=-1 và 2a+b=-4
=>a=-3 và b=2
c: (d): y=-3x+2 và (P): y=-x^2
b: Vì (d')//(d) nên a=2
Vậy: (d'): y=2x+b
Thay x=1 và y=4 vào (d'), ta được:
b+2=4
hay b=2
a: Vì (d)//(d') nên \(\left\{{}\begin{matrix}a=-3\\b\ne-\dfrac{2}{3}\end{matrix}\right.\)
Vậy: (d): \(y=-3x+b\)
Thay x=-2 và y=-4 vào (d), ta được:
\(b-3\cdot\left(-2\right)=-4\)
=>b+6=-4
=>b=-10
Vậy: (d): y=-3x-10
b: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\2x-2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
(d) có hệ số góc là -3 nên a=-3
Vậy: (d): y=-3x+b
Thay x=1 và y=0 vào (d), ta được:
\(b-3\cdot1=0\)
=>b-3=0
=>b=3
Vậy: (d): y=-3x+3