( x - 2) (xy - 1) = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
B-(\(3x^6-4xy^5+\dfrac{1}{3}xy^2\))=
B= \(\left(7x^6-\dfrac{1}{2}xy^5-xy^2-\dfrac{1}{3}\right)+\left(3x^6-4xy^5+\dfrac{1}{3}xy^2-\dfrac{3}{2}\right)\)
B= \(7x^6-\dfrac{1}{2}xy^5-xy^2-\dfrac{1}{3}+3x^6-4xy^5+\dfrac{1}{3}xy^2-\dfrac{3}{2}\)
B= \(7x^6+3x^6-\dfrac{1}{2}xy^5-4xy^5-xy^2+\dfrac{1}{3}xy^2-\dfrac{1}{3}+\dfrac{2}{3}\)
B= \(10x^6-\dfrac{9}{2}xy^5-\dfrac{2}{3}xy^2+\dfrac{1}{3}\)
a, x=1; y=2 => 12
x=2; y=1 => 21
b, x=1; y=5 => 15
x=5; y=1 => 51
c, x=1; y=6 => 16
x=6;y=1 => 61
x=2; y=3=> 23
x=3; y=2 => 32
d, x=1; y=8 => 18
x=2; y=4 => 24
x=4; y=2 => 42
x=8; y=1 => 81
\(\left\{{}\begin{matrix}\left(x-15\right)\left(y+2\right)=xy\\\left(x+15\right)\left(y-1\right)=xy\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}xy+2x-15y-30-xy=0\\xy-x+15y-15-xy=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-15y=30\\-x+15y=15\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-15=30\\3x=45\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=45\\y=4\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y) = (45;4)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{2}{x}+\dfrac{5}{y}=7\end{matrix}\right.\) (ĐK: x,y >0)
⇔\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=25\\\dfrac{2}{x}+\dfrac{5}{y}=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=25\\\dfrac{3}{x}=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{6}{29}\end{matrix}\right.\) (TM)
Vậy HPT có nghiệm (x;y) = (\(\dfrac{1}{6};\dfrac{6}{29}\))
\(A=(xy^2-1)(x^2y+5)-xy^2(x^2y+5)\\=(x^2y+5)(xy^2-1-xy^2)\\=(x^2y+5)\cdot(-1)\\=-x^2y-5\)
A=( xy^2-1)(x^2y+5)-xy^2( x^2y+5)
=xy^2.(x^2y+5)-1.(x^2y+5)-x^3y^3-5xy^2
=-x^2-5 ( bước này làm tắc )
\(\left(x-1\right)\left(y-5\right)=7\)
\(\left(x-1\right)\left(y-5\right)=7=1.7=7.1=-1.\left(-7\right)=-7.\left(-1\right)\)
x-1 | 1 | 7 | -1 | -7 |
y-5 | 7 | 1 | -7 | -1 |
x | 2 | 8 | 0 | -6 |
y | 12 | 6 | -2 | 4 |
vậy ...
mấy cái khác tương tự nha
\(\left(x+3\right)\left(xy+2\right)=3\)
\(\left(x+3\right)\left(xy+2\right)=3=1.3=3.1=-1.\left(-3\right)=-3.\left(-1\right)\)
\(th1\orbr{\begin{cases}x+3=1\\xy+2=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\-2y+2=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\-2y=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\y=-\frac{1}{2}\end{cases}}}\)
\(th2\orbr{\begin{cases}x+3=3\\xy+2=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\0y+2=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\0y=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y=0:1\left(ktm\right)\end{cases}}}\)
\(th3\orbr{\begin{cases}x+3=-1\\xy+2=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\-4y+2=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\-4y=-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\y=-\frac{5}{4}\end{cases}}}\)
\(th4\orbr{\begin{cases}x+3=-3\\xy+2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\-6y+2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\-6y=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\y=-\frac{1}{2}\end{cases}}}\)
vậy .......
a: \(=n^3+2n^2+3n^2+6n-n-2-n^3+5\)
\(=5n^2+5n+3⋮̸5\)
b:\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
d: \(=4x^2y^2-2x^2y+2xy^2-xy-4x^2y^2+xy\)
\(=-2\left(x^2y-xy^2\right)⋮2\)
\(\left(x-2\right)\left(xy-1\right)=5=1\cdot5=5\cdot1=-1\cdot-5=-5\cdot-1\)
Ta có bảng sau:
Vậy: ...