Bài 1 : Tìm n sao cho các PS sau là NGUYÊN
A = \(\dfrac{10n-3}{5n+2}\)
B =\(\dfrac{12n+5}{6n-3}\)
Giúp mình với , mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{15-3n}{n+2}=\frac{21-3(n+2)}{n+2}=\frac{21}{n+2}-3$
Để $A$ lớn nhất thì $\frac{21}{n+2}$ lớn nhất
Điều này xảy ra khi $n+2>0$ và $n+2$ nhỏ nhất.
Với $n$ nguyên, $n+2>0$ và nhỏ nhất bằng 1
$\Rightarrow n+2=1$
$\Rightarrow n=-1$
------------------------------------
$B=\frac{17-2(2n+1)}{2n+1}=\frac{17}{2n+1}-2$
Để $B$ lớn nhất thì $\frac{17}{2n+1}$ lớn nhất
Điều này xảy ra khi $2n+1>0$ và $2n+1$ nhỏ nhất
Với $n$ nguyên thì $2n+1$ nguyên dương nhỏ nhất bằng 1
$\Rightarrow 2n+1=1$
$\Rightarrow n=0$
Vì \(n\inℤ\Rightarrow\hept{\begin{cases}6n+42\inℤ\\6n\inℤ\end{cases};\left(6n\ne0\right)}\)
mà \(A\inℤ\Leftrightarrow6n+42⋮6n\)
Vì \(6n⋮6n\)
\(\Rightarrow42⋮6n\)
\(\Rightarrow7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)\)
\(\Rightarrow n\in\left\{1;-1;7;-7\right\}\text{thì }A\inℤ\)
Để A là số nguyên thì 42 phải chia hết cho 6n và n thuộc Z
suy ra : 6n thuộc Ư (42) = { 1,2,3,6,7,14,21,42,-1,-2,-3,-6,-7,-14,-21,-42}
suy ra : n thuộc { 1,-1,7,-7 }
Vậy n thuộc 1,-1,7,-7
a) n + 1 chia hết cho n - 3
=> n - 3+ 4 chia hết cho n - 3
=> 4 chia hết cho n-3
=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
thế n-3 vô từng trường hợp các ước của 4 rồi tim x
b) 2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2(n+1) + 3 chia hết cho n +1
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {1;-1;3;-3}
tìm x giống bài a
c) 10n chia hết cho 5n - 3
=> 10n - 6 + 6 chia hết cho 5n - 3
=> 2.(5n - 3) + 6 chia hết cho 5n - 3
=> 6 chia hết cho 5n - 3
=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
tìm x giống bài a
a. n+1=(n-3)+4
(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)
Ta có (n-3) chia hết cho (n-3)
Suy ra 4 phải chia hết cho (n-3)
Vậy n= -1 ,1 , 2 , 4
b. 2n+5=2n+2+3=2(n+1)+3
tương tự câu a ta có 2(n+1) chia hết cho (n+1)
Suy ra 3 phải chia hết cho (n+1)
Vậy n=-2,0,2
c.10n=10n-6+6=2(5n-3) +6
Tiếp tục àm tương tự như câu a và b
a)\(A=\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)-5}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}\in Z\)
=>5 chia hết 3n+1
=>3n+1\(\in\){1,-1,5,-5}
=>n\(\in\){0;-2}vì x nguyên
phần kia tương tự
a) Gọi d là ƯCLN(n + 1; n + 2)
\(\Rightarrow n+1⋮d\)
\(n+2⋮d\)
\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)
\(\Rightarrow\left(n+2-n-1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản
b) Gọi d là ƯCLN(n + 1; 3n + 4)
\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)
Do \(n+1⋮d\Rightarrow3n+3⋮d\)
\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản
c) Gọi d là ƯCLN(3n + 2; 5n + 3)
\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)
Do \(3n+2⋮d\)
\(\Rightarrow5\left(3n+2\right)⋮d\)
\(\Rightarrow15n+10⋮d\) (1)
Do \(5n+3⋮d\)
\(\Rightarrow3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+9⋮d\) (2)
Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)
\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản
d) Gọi d là ƯCLN(12n + 1; 30n + 2)
\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)
Do \(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\) (3)
Do \(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮2\) (4)
Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)
\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
a: Gọi d=ƯCLN(n+1;n+2)
=>n+2-n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
b: Gọi d=ƯCLN(3n+4;n+1)
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
d: Gọi d=ƯCLN(12n+1;30n+2)
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
\(A=\dfrac{10n-3}{5n+2}=\dfrac{10n+4-7}{5n+2}=\dfrac{2\left(5n+2\right)-7}{5n+2}=2-\dfrac{7}{5n+2}\)
Để A nguyên thì \(7\) ⋮ 5n + 2
\(\Rightarrow5n+2\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow5n\in\left\{-1;-3;5;-9\right\}\)
\(\Rightarrow n\in\left\{-\dfrac{1}{5};-\dfrac{3}{5};1;-\dfrac{9}{5}\right\}\)
________________
\(B=\dfrac{12n+5}{6n-3}=\dfrac{12n-6+11}{6n-3}=\dfrac{2\left(6n-3\right)+11}{6n-3}=2+\dfrac{11}{6n-3}\)
Để B nguyên thì \(11\) ⋮ 6n - 3
\(\Rightarrow6n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow6n\in\left\{4;2;14;-8\right\}\)
\(\Rightarrow n\in\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{7}{3};-\dfrac{4}{3}\right\}\)