\(\left\{{}\begin{matrix}17x+2y=2011\left|xy\right|\\x-2y=3xy\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét 2 trường hợp sau:
TH1: \(xy\geq 0\Rightarrow |xy|=xy\)
HPT \(\Leftrightarrow \left\{\begin{matrix} 17x+2y=2011xy(1)\\ x-2y=3xy(2)\end{matrix}\right.\)
\((1)+(2)\Rightarrow 18x=2014xy\Leftrightarrow x(18-2014y)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=0\\ y=\frac{9}{1007}\end{matrix}\right.\)
Nếu \(x=0\Rightarrow -2y=0\Leftrightarrow y=0\) (t/m)
Nếu \(y=\frac{9}{1007}\Rightarrow x-\frac{18}{1007}=\frac{27x}{1007}\Leftrightarrow x=\frac{9}{490}\) (t/m)
TH2: \(xy\leq 0\Rightarrow |xy|=-xy\)
HPT \(\Leftrightarrow \left\{\begin{matrix} 17x+2y=-2011xy\\ x-2y=3xy\end{matrix}\right.\)
\(\Rightarrow 18x=-2011xy+3xy=-2008xy\)
\(\Leftrightarrow x(18+2008y)=0\)
Nếu \(x=0\Rightarrow -2y=0\Rightarrow y=0\) (t/m)
Nếu \(y=-\frac{9}{1004}\Rightarrow x+\frac{18}{1004}=\frac{-27x}{1004}\Leftrightarrow x=-\frac{18}{1031}\) (không t/m)
Vậy \((x,y)=(0,0); (\frac{9}{490}, \frac{9}{1007})\)
1) Từ đề bài => (17x + 2y)+(x - 2y) = 2011|xy|+3xy
<=> 18x = 2011|xy|+3xy (1)
Dễ thấy x = y = 0 là nghiệm của (1)
Bây giờ ta xét trường hợp x và y khác 0
+ Nếu xy < 0, từ (1) => 18x = -2011xy + 3xy
<=> 18x = -2008xy
<=> y = -1004/9
Thay vào x - 2y = 3xy ta được:
x - 2.(-1004/9) = 3.(-1004/9).x
<=> x = -2008/3021 (không TM xy < 0)
+ Nếu xy > 0, từ (1) => 18x = 2011xy + 3xy
<=> 18x = 2014xy
<=> y = 1007/9
Thay vào x - 2y = 3xy ta được:
x - 2.1007/9 = 3x.1007/9
<=> x = -1007/1506 (ko TM)
Vậy ...
2. DKXD: \(x\ge0;y\ge z;z\ge x\)
\(\left(1\right)\Leftrightarrow2\sqrt{x}+2\sqrt{y-z}+2\sqrt{z-x}=y+3\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-z-2\sqrt{y-z}+1\right)+\left(z-x-2\sqrt{z-x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-z}-1\right)^2+\left(\sqrt{z-x}-1\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x}-1=0\\\sqrt{y-z}-1=0\\\sqrt{z-x}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=3\\z=2\end{matrix}\right.\)(TM DKXD)
KL: ...
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
- TH1: \(xy\ge0\Rightarrow\left|xy\right|=xy\)
Hệ trở thành: \(\left\{{}\begin{matrix}17x+2y=2011xy\\x-2y=3xy\end{matrix}\right.\)
Cộng vế: \(\Rightarrow18x=2014xy\Rightarrow2x\left(1007y-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\y=\dfrac{9}{1007}\Rightarrow x=\dfrac{9}{490}\end{matrix}\right.\) (đều thỏa mãn)
TH2: \(xy< 0\Rightarrow\left|xy\right|=-xy\)
Hệ trở thành: \(\left\{{}\begin{matrix}17x+2y=-2011xy\\x-2y=3xy\end{matrix}\right.\)
Cộng vế: \(18x=-2008xy\Rightarrow2x\left(9+1004y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\left(loại\right)\\y=-\dfrac{9}{1004}\Rightarrow x=-\dfrac{18}{1031}\left(loại\right)\end{matrix}\right.\)