Các bạn giúp câu này với A=1/101+1/102+...+1/300 Chứng minh A<3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .
Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )
2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .
Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .
=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .
Vậy : A < 1
refer
https://hoc247.net/hoi-dap/toan-6/chung-minh-1-101-1-102-1-103-1-104-1-299-1-300-2-3-faq302038.html
Số số hạng của A là:
(200-101):1+1=100(số)
Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :
100:50=2(nhóm)
Ta có :
A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)
Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50
1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50
Từ 3 điều trên suy ra:
A<1/150x50+1/200x50
A<1/3+1/4
A<7/12
vậy A<7/12
Nhớ like cho mik nhé
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))
\(\Leftrightarrow A>\frac{100}{200}\)
\(\Leftrightarrow A>\frac{1}{2}\)
1/Bạn thấy trong phép chia thì phép nào có số chia lớn hơn thì thương nhỏ hơn, vì vậy ps có mẫu lớn hơn thì nhỏ hơn.
2/ Ta có: Số số hạng của tổng là 200
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(...\)
\(\frac{1}{199}>\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}>\frac{1}{200}+...+\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}>\frac{1}{200}+...+\frac{1}{200}\)(mỗi bên đều 200 số hạng)
\(\Rightarrow A>\frac{1}{200}.200\)
\(\Rightarrow A>1\)
Ta có:
\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}+\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}\)
Do: \(\dfrac{1}{101}< \dfrac{1}{100}\); \(\dfrac{1}{102}< \dfrac{1}{100}\); ...; \(\dfrac{1}{200}< \dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{100}{100}=1\) (1)
Lại có:
\(\dfrac{1}{201}< \dfrac{1}{200}\) ; \(\dfrac{1}{202}< \dfrac{1}{200}\) ;...;\(\dfrac{1}{300}< \dfrac{1}{200}\)
\(\Rightarrow\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}< \dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)
\(\Rightarrow\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}< \dfrac{100}{200}=\dfrac{1}{2}\) (2)
Từ (1);(2) \(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{300}< 1+\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{3}{2}\)