K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

S= 3^0 +3^2 +3^4 +....+ 3^2002

9S= 3^4 +3^6+.......+3^2004

9S-S=3^2004-1

8S=3^2004-1

S=3^2004-1/8

chúc bạn học tốt

20 tháng 8 2017

a﴿ Nhân S với 3 2 ta được:

9S=3^2 + 3^4 + ... + 3^2002 + 3^2004  => 9S ‐ S = ﴾3^2 + 3^4 + ... + 3^2004 ﴿ ‐ ﴾ 3^0 + 3^4 + ... + 2^2002 ﴿

 =>8S=3^2004‐1

 =>S= 3^2004‐1 /8

b﴿ ta có S là số nguyên nên phải chứng minh 3^2004‐1 chia hết cho 7 ta có : 3^2004‐1 = ﴾ 3^6 ﴿ 334‐1 = ﴾ 3^6‐1 ﴿ . M = 7 . 104 . M    => 3^2004 chia hết cho 7 . Mặt khác \(^{ƯCLN^{ }}\left(7;8\right)\)= 1 nên S chia hết cho 7

HIHI

31 tháng 10 2021

b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

11 tháng 10 2021

b: \(S=3^0+3^2+3^4+...+3^{2002}\)

\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:
a.

$S=3^0+3^2+3^4+...+3^{2002}$

$3^2S=3^2+3^4+3^6+...+3^{2004}$

$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$

$8S=3^{2004}-3^0=3^{2004}-1$

$S=\frac{3^{2004}-1}{8}$
b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$

$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$

$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$

$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$

Ta có đpcm.

29 tháng 3 2017

nonnônnọn

nhập đi

29 tháng 3 2017

lừa nhau à

29 tháng 3 2017

19654278321

29 tháng 3 2017

bạn ơi cả 2 loại số cơ và thẻ gì vậy?

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

17 tháng 10 2021

undefined

22 tháng 9 2017

Bạn tự ghi lại đề nha!

S . 5 = 5 . ( 5 + 52 + 53 + ... + 599 + 5100 )

S . 5 = 52 + 53 + 54 + ... + 5100 + 5101

S . 5 - S = ( 5+ 53 + 5+ ... + 5100 + 5101 ) - ( 5 + 5+ 5+ ... + 599 + 5100 )

S . 4 = 5101 - 5

S = \(\frac{5^{101}-5}{4}\)

22 tháng 9 2017

Bạn hơi lạc đề nhưng mk vẫn k cho bn rồi đấy

24 tháng 7 2017

thanks ! sorry mk chưa học

17 tháng 8 2017

Học lớp mấy rồi hả Thy