K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: C

Câu 2: B

Câu 3: C

Câu 4: A

Câu 5: A

Câu 6: C

Câu 7: B

Câu 13:B

Câu 15: D

Câu 16: B

Câu 21: A

Câu 24: C

Câu 25: B

Câu 26: C

Câu 28: C

Câu 31: B

Câu 32: A

Câu 33: B

Câu 34: A

Câu 35: D

8 tháng 4 2023

Em post lại câu hỏi đi thì mình mới giúp được em chứ, em có post bài của con đâu làm sao mình tư vấn được trân trọng

NV
5 tháng 1 2024

2.

Gọi \(H\left(x;y\right)\) là toạ độ chân đường cao ứng với BC \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}=\left(x-1;y+2\right)\\\overrightarrow{BC}=\left(2;1\right)\end{matrix}\right.\)

Do AH vuông góc BC \(\Rightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)

\(\Rightarrow2\left(x-1\right)+y+2=0\Leftrightarrow y=-2x\)

 \(\Rightarrow H\left(x;-2x\right)\Rightarrow\overrightarrow{BH}=\left(x+2;-2x-3\right)\)

Do H thuộc BC nên B, C, H thẳng hàng hay các vecto \(\overrightarrow{BC};\overrightarrow{BH}\) cùng phương

\(\Rightarrow\dfrac{x+2}{2}=\dfrac{-2x-3}{1}\Rightarrow x=\dfrac{8}{5}\Rightarrow y=-\dfrac{16}{5}\) \(\Rightarrow H\left(-\dfrac{8}{5};\dfrac{16}{5}\right)\)

\(\Rightarrow\overrightarrow{AH}=\left(-\dfrac{13}{5};\dfrac{26}{5}\right)\Rightarrow\left\{{}\begin{matrix}AH=\sqrt{\left(-\dfrac{13}{5}\right)^2+\left(-\dfrac{6}{5}\right)^2}=\dfrac{13\sqrt{5}}{5}\\BC=\sqrt{2^2+1^2}=\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{13}{2}\)

NV
5 tháng 1 2024

3.

loading...

Kẻ AD vuông góc BC tại D

\(\Rightarrow AD=BH=10\) ; \(BD=AH=4\)

\(tan\widehat{BAD}=\dfrac{BD}{AD}=\dfrac{2}{5}\Rightarrow\widehat{BAD}\approx21^048'5''\)

\(\Rightarrow\widehat{CAD}=60^0-\widehat{BAD}=38^011'55''\)

\(\Rightarrow CD=AD.tan\widehat{CAD}=7,87\left(m\right)\)

\(\Rightarrow BC=BD+CD=11,87\left(m\right)\)

NV
5 tháng 1 2024

a.

D E thuộc Ox \(\Rightarrow\) tọa độ E có dạng \(E\left(x;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OE}=\left(x;0\right)\\\overrightarrow{OM}=\left(4;1\right)\end{matrix}\right.\)

Tam giác OEM cân tại O \(\Rightarrow OE=OM\)

\(\Rightarrow\sqrt{x^2+0^2}=\sqrt{4^2+1^2}\Rightarrow x^2=17\)

\(\Rightarrow x=\pm\sqrt{17}\Rightarrow\left[{}\begin{matrix}E\left(\sqrt{17};0\right)\\E\left(-\sqrt{17};0\right)\end{matrix}\right.\)

b.

\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-4;-1\right)\\\overrightarrow{MB}=\left(-4;b-1\right)\end{matrix}\right.\)

Tam giác ABM vuông tại M \(\Rightarrow\overrightarrow{MA}.\overrightarrow{MB}=0\)

\(\Rightarrow-4\left(a-4\right)-1\left(b-1\right)=0\)

\(\Leftrightarrow4a+b-17=0\Rightarrow b=17-4a\)

Lại có \(S_{ABM}=\dfrac{1}{2}MA.MB=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{\left(b-1\right)^2+16}\)

\(=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{\left(16-4a\right)^2+16}=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{16\left[\left(a-4\right)^2+1\right]}\)

\(=2\left[\left(a-4\right)^2+1\right]\ge2\)

Dấu "=" xảy ra khi \(a-4=0\Rightarrow a=4\Rightarrow b=1\)

14 tháng 12 2020

Các bạn giúp em với ạ

6 tháng 2 2016

Tại lần trước có nhìu người phản đối đc làm quá ít nên olm tăng lên 30

6 tháng 2 2016

mk đang là vip nen ko biết vụ này 

26 tháng 11 2016

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3

=>A  chia hết cho 3

26 tháng 11 2016

A = 2 + 22 + 23 + 24 + ... + 260

=> A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )

=> A = 2( 1 + 2 ) + 22(1 + 2 ) + ... + 259( 1 + 2 )

=> A = 2 . 3 + 22 . 3 + ... + 259 . 3

=> A = ( 2 + 22 + 259 ) . 3 chia hết cho 3

Vậy A chia hết cho A