K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1

    (Sửa \(2\) thành \(2^0\))

Để \(S\) là \(B\left(-5\right)\)
    thì \(S\) ⋮ \(-5\)
⇒ Ta phải chứng minh \(S\) ⋮ \(-5\)
    Ta có:
    \(S=2^0+2^1+2^2+...+2^{103}\)
\(S=\left(2^0+2^1+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{100}+2^{101}+2^{102}+2^{103}\right)\)
\(S=2^0\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{100}\left(1+2+2^2+2^3\right)\)
\(S=\left(1+2+2^2+2^3\right)\left(2^0+2^4+...+2^{100}\right)\)
\(S=15\left(2^0+2^4+...+2^{100}\right)\)
    Vì \(15\) ⋮ \(-5\)
⇒ \(S\) ⋮ \(-5\)
⇒ \(S\) là bội của \(-5\)
⇒ ĐPCM

\(\#PeaGea\)  

28 tháng 1

Camon bạn

14 tháng 10 2023

a) Tổng A có số số hạng là:

`(101-1):1+1=101`(số hạng)

b) `A=2+2^3 +2^5 +...+2^101`

`2^2 A=2^3 +2^5 +2^7 +...+2^103`

`4A-A=2^3 +2^5 +2^7 +...+2^103 -2-2^3 -2^5 -...-2^101`

`3A=2^103 -2`

`=>3A+2=2^103 -2+2=2^103`

c) `A=2+2^3 +2^5 +...+2^101`

`A=2(1+2^2 +2^4 +...+2^100)⋮2`

`A=2+2^3 +2^5 +...+2^101`

`A=2(1+2^2 +2^4)+...+2^97 .(1+2^2 +2^4)`

`A=2.21+...+2^97 .21`

`A=21(2+...+2^97)⋮21`

14 tháng 10 2023

loading...  loading...  

17 tháng 5 2017

do \(\frac{5}{20}< 1;\frac{5}{21}< 1;\frac{5}{22}< 1;\frac{5}{23}< 1;\frac{5}{24}< 1\)

\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}< 1\)

Vậy S < 1

Mk nghĩ thế bn ạ

Ai thấy tớ đúng ủng hộ nha

     

17 tháng 5 2017

Ta có: \(\frac{5}{20}>\frac{5}{25}\)

\(\frac{5}{21}>\frac{5}{25}\)

\(\frac{5}{22}>\frac{5}{25}\)

\(\frac{5}{23}>\frac{5}{25}\)

\(\frac{5}{24}>\frac{5}{25}\)

=> \(S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)

Vậy S > 1

15 tháng 5 2017

Ta có :

\(\frac{5}{20}>\frac{5}{25}\)

\(\frac{5}{21}>\frac{5}{25}\)

\(\frac{5}{22}>\frac{5}{25}\)

\(\frac{5}{23}>\frac{5}{25}\)

\(\frac{5}{24}>\frac{5}{25}\)

\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>5.\frac{5}{25}=1\)

\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>1\)

15 tháng 5 2017

ta có S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=5/25*5=1

=>đpcm

9 tháng 4 2015

\(S=5.\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)\)

Xét \(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\). Chứng minh 3/5 < A < 8/5

+ Có: \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\frac{3}{5}\Rightarrow S>3\)  (2)

Từ (1)(2) => 3 < S < 8

 

15 tháng 2 2018

Này Trần Thị Loan à, tớ thấy cậu nên

thay chữ "xét" ở chỗ "xét A" thành chữ"đặt"

nghe hợp lý hơn.

9 tháng 3 2016

Tách từng nhóm 2 số ra mà làm 

4 tháng 4 2018

Easy!!

\(S=\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\) (15 phân số \(\dfrac{1}{29}\))

\(=\dfrac{1.15}{29}=\dfrac{15}{29}>\dfrac{1}{2}\) (*)

\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{2}^{\left(đpcm\right)}\)

P/s: đpcm là điều phải chứng minh

4 tháng 4 2018

\(S=\dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{35}\)

\(S=\dfrac{1}{21}+\dfrac{1}{22}+.........+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+\dfrac{1}{29}+........+\dfrac{1}{29}\)( 15 phân số \(\dfrac{1}{29}\))

\(S=\dfrac{15}{29}>\dfrac{1}{2}\)

\(S>\dfrac{1}{2}\)

Vậy S > \(\dfrac{1}{2}\)(đpcm)