c\m 12n+1 và 30n+4 là hai số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(12n+1 ; 30n+2)
=> 6(12n + 1 ) - 2(30n + 2 ) chia hết cho d
=> 2 chia hết cho d
Mà 12n+1 lẻ
=> d = 1
Vậy ........
Gọi d là ước chung của 12n+1 và 30n+2
\(\Rightarrow\)12n+1 \(⋮\)d và 30n+2\(⋮\)d
\(\Rightarrow\)60n+5\(⋮\)d và 60n+4\(⋮\)d
\(\Rightarrow\)60n+5-60n-4\(⋮\)d
\(\Rightarrow\)1\(⋮\)d \(\Rightarrow\)d=1
vậy 12n+1 và 30n+2 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 12n + 1 và 30n + 4 là d
Ta có: \(\left\{{}\begin{matrix}12n+1⋮d\\30n+4⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+4\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}60n+5⋮d\\60n+8⋮d\end{matrix}\right.\)
⇒ 60n + 8 - 60n - 5 ⋮ d
3 ⋮ d
d \(\in\) {1; 3}
Nếu d = 3 ⇒ 30n + 4 ⋮ 3
⇒ 4 ⋮ 3 (loại)
⇒ d = 1hay 12n + 1 và 30n + 4 là hai số nguyên tố cùng nhau.
TK :
Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
Lời giải:
Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$
$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow ƯCLN(12n+1, 30n+2)=1$
$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.
Gọi ƯCLN(12n + 1;30n + 4) = d . Ta có :
12n + 1 ⋮ d => 5(12n + 1) = 60n + 5 ⋮ d
30n + 4 ⋮ d => 2(30n + 4) = 60n + 8 ⋮ d
=> (60n + 8) - (60n + 5) ⋮ d
=> 3 ⋮ d => d ∈ Ư(3) ∈ {1;3} ( Vì ƯCLN ko có số nguyên âm)
Mặt khác :12n + 1 không chia hết cho 3 (Vì 12n ⋮ 3 nhưng 1 ko chia hết cho 3)
=> d = 1 . Vậy 2 số sau là 2 số nguyên tố cùng nhau
Gọi ước chung của 12n + 1 và 30n + 2 là d
Ta có: \(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}\left(12n+1\right).5⋮d\\\left(30n+2\right).2⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
⇒ 60n + 5 - (60n + 4)⋮ d
⇒ 60n + 5 - 60n - 4 ⋮ d
⇒ 1 ⋮ d
⇒ d = 1 vậy ước chung lớn nhất của 12n + 1 và 30n + 2 là 1
Hay 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau (đpcm)
Gọi d là ƯCLN của (12n+1,30n+2).
Hay:12n+1-30n+2
Hay 5(12n+1)-2(30n+2)
Hay 60n+5-60n+4
Hay 1 chia hết cho d.
Vậy 12n+1 và 30n+2 là 2 số nguyen tố cùng nhau.
Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN (12n + 1; 30n + 2) Nên ta có :
12n + 1 ⋮ d và 30n + 2 ⋮ d
<=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d
<=> 60n + 5 ⋮ d và 60n + 4 ⋮ d
=> (60n + 5) - (60n + 4) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (12n + 1; 30n + 2) = 1 nên 12n + 1; 30n + 2 là nguyên tố cùng nhau
Gọi ước chung lớn nhất của 12n + 1 và 30n + 4 là d
Ta có: \(\left\{{}\begin{matrix}12n+1⋮d\\30n+4⋮d\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}\left(12n+1\right).5⋮d\\\left(30n+4\right).2⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}60n+5⋮d\\60n+8⋮d\end{matrix}\right.\)
⇒ 60n + 8 -(60n + 5) ⋮ d
⇒ 60n +8 - 60n - 5 ⋮ d
3 ⋮ d ⇒ d = {1; 3}
Nếu d = 3 ⇒ 12 n + 1 ⋮ 3 ⇒ 1 ⋮ 3 (vô lí)
Vậy d = 1
Hay 12n + 1 và 30n + 4 là hai số nguyên tố cùng nhau (đpcm)