K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

2525 - 2524 = 2524.(25 - 1) = 2524.24 chia hết cho 24

12 tháng 7 2015

2525 - 2524 = 2524.(25 - 1) = 2524.24 chia hết cho 24

9 tháng 5 2022

2525+5252+2524

=7777+2524

=10301

9 tháng 5 2022

=7777+2524=10301

2 tháng 12 2021

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)

4 tháng 11 2015

1)

+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)

+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)

+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2

      Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3  

            =>p+8 là hợp số (trái với giả thiết )

Vậy p phải có dạng là  3k+2

Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3

=>p+4 là hợp số (đpcm)

1 tháng 7 2015

5^25 lẻ ; 2^24 chẵn => 25^25 - 2^24 lẻ => không chia hết cho 24. Đề sai

1 tháng 7 2015

\(25^{25}-25^{24}=25^{24}.25-25^{24}.1=25^{24}.\left(25-1\right)=25^{24}.24\)chia hết cho 24(đpcm)

21 tháng 9 2017

Gọi số cần tìm là \(a\)

Theo đề bài ta có:

\(a:36\)\(24\)

Nên:

\(a=36k+24\)

\(\left\{{}\begin{matrix}36k⋮2\\24⋮2\end{matrix}\right.\)

Nên \(a⋮2\)

Ta có đpcm

21 tháng 9 2017

a = 36k + 24

= 24k + 12k + 24

= 24(k + 1) + 12k

Vì 24(k + 1), 12k \(⋮\) 12 nên 24(k + 1) + 12k \(⋮\) 12.

\(\Rightarrow\) Điều phải chứng tỏ

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)

\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)

\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)

\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)

\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)