Cho \(\widehat{xOy}\) vuông, A cố định trên Ox. M, N thay đổi trên OX và OY sao cho AM = ON. CMR trung điểm I của M chạy trên một đường thẳng cố định.
Làm ơn giúp mình nhanh với ạ, mình đang cần gấp!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên Ox lấy A , Oy lấy B sao cho OA = OB = m
suy ra M nằm giữa O,A
N giua O,B ( do OM+ON = m suy ra OM ; ON < OA = OB)
lấy M tùy ý trên OA
suy ra điểm N sẽ nằm vị trí sao cho NB = OM
trên OA lấy I là trung điểm
trên OB lấy K là trung điểm
vì giao 2 đường ttrực của MN ở vị trí đac biệt trên nằm trên phân giác góc XOY
suy ra điểm giao đó chính là giao 3 trung trực tam giác OAB ( do tg này cân tại O)
gọi giao 3 đường trung trực là P
suy ra tam giác MIP = NKP (cgc)
suy ra tam giác MNP là tam giác cân suy ra trung trực MN đi qua P cố định (đpcm)
Treeb Tia Oy lấy P sao cho NP = OM => OM + ON = NP + ON = OP = m = const => OP không đổi
Do Ox cố định nên OP cố định => Trung trực của OP cố định. Gọi giao điểm giữa trung trực của OP với phân giác ^xOy là Q và S. Dễ thấy S cố định. Ta sẽ c/m trung trực của MN đi qua S.
Thật vậy: SO = SP => \(\Delta\)SOP cân tại tại S => ^SOP = ^SPO => ^SPN = ^SOM
Xét \(\Delta\)MOS và \(\Delta\)NPS: SO = SP, OM = PN, ^SOM = ^SPN => \(\Delta\)MOS = \(\Delta\)NPS (c.g.c)
=> SM = SN => S thuộc trung trực MN => ĐPCM.
trên Ox lấy A , Oy lấy B sao cho OA = OB = m
suy ra M nằm giữa O,A
N giua O,B ( do OM+ON = m suy ra OM ; ON < OA = OB)
lấy M tùy ý trên OA
suy ra điểm N sẽ nằm vị trí sao cho NB = OM
trên OA lấy I là trung điểm
trên OB lấy K là trung điểm
vì giao 2 đường ttrực của MN ở vị trí đac biệt trên nằm trên phân giác góc XOY
suy ra điểm giao đó chính là giao 3 trung trực tam giác OAB ( do tg này cân tại O)
gọi giao 3 đường trung trực là P
suy ra tam giác MIP = NKP (cgc)
suy ra tam giác MNP là tam giác cân suy ra trung trực MN đi qua P cố định (đpcm)