chứng tỏ 2+2^2+2^3+...+2^2023+2^2024 chia hêt cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
A-B
A = 50+52+54+...52022
52xA=52+54+...52024
24xA = 52024-1
A=\(\dfrac{5^{2024}-1}{24}\)
B = 51+53+...52023
B =5x(50+52+...52022) = 5xA
M = A-B = A-5xA = -4A
M=\(\dfrac{1-5^{2024}}{6}\)
Vậy 24xA - 1 = 52024
Nên 52024 chia cho 3 dư 2
Lời giải:
$A=9+2.3^2+2.3^3+2.3^4+...+2.3^{2023}$
$A-9=2(3^2+3^3+3^4+...+3^{2023})$
$3(A-9)=2(3^3+3^4+3^5+...+3^{2024})$
$\Rightarrow 3(A-9)-(A-9)=2(3^{2024}-3^2)$
$2(A-9)=2.3^{2024}-18$
$\Rightarrow 2A-18=2.3^{2024}-18$
$\Rightarrow A=3^{2024}\vdots 3^{2023}$ (đpcm)
Ta có:
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(H=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(H=3\cdot\left(2+2^3+...+2^{59}\right)\)
Vậy H chia hết cho 3
_______
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(H=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(H=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy H chia hết cho 7
__________
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(H=2\cdot\left(1+2+4+8\right)+2^5\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)
\(H=15\cdot\left(2+2^5+...+2^{57}\right)\)
Vậy H chia hết cho 15
H=2+22+23+...+260�=2+22+23+...+260
Ta có:
H=2.(1+2)+23.(1+2)+...+259.(1+2)�=2.1+2+23.1+2+...+259.(1+2)
H=2.3+23.3+...+259.3�=2.3+23.3+...+259.3
H=3.(2+23+...+259)⋮3�=3.2+23+...+259 ⋮3
Ta có:
H=2.(1+2+22)+24.(1+2+22)+...+228.(1+2+22)�=2.1+2+22+24.1+2+22+...+228.1+2+22
H=2.7+24.7+...+258.7�=2.7+24.7+...+258.7H=7.(2+24+...+258)⋮7�=7.2+24+...+258 ⋮7
Ta có:
H=2.(1+2+22+23)+25.(1+2+22+23)+...+257.(1+2+22+23)�=2.1+2+22+23+25.1+2+22+23+...+257.1+2+22+23
H=2.15+25.15+...+257.15�=2.15+25.15+...+257.15
H=15.(2+25+...+257)⋮15�=15.2+25+...+257 ⋮15Vậy H chia hết cho 3;7;153; 7; 15.
nhớ tik đúng nha!!!
chứng tỏ 2+2^2+2^3+...+2^2023+2^2024
=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+(2^9+2^10+2^11+2^12)+.....+(2^2021+2^2022+2^2023+2^2024)
=30+2^5.(2+2^2+2^3+2^4)+2^9.(2+2^2+2^3+2^4)+.....+2^2021.(2+2^2+2^3+2^4)
=30+2^5.30+2^9.30+......+2^2021.30
=30.(1+2^5+2^9+....+2^2021) chia hết cho 5 (vì 30 chia hết cho 5)
vậy 2+2^2+2^3+....+2^2023+2^2024 chia hết cho 5
chill