Biết độ dài của 3 cạnh của tam giác tỉ lệ với 4:6:8. Độ dài 3 đường cao của tam giác đó tỉ lệ với 3 số nào
ĐỄ LM THỬ LÀM ĐI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài ba đường cao lần lượt là a,b,c
Độ dài 3 cạnh tỉ lệ với 2;3;4
=>2a=3b=4c
=>a/6=b/4=c/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{6+4+3}=\dfrac{13}{13}=1\)
=>a=6; b=4; c=3
Gọi 3 đường cao là a,b,c còn 3 cạnh là x,y,z
Ta có x/2=y/3=z/4 (giả thiết) và x.a=y.b=z.c (1) (dựa vào công thức tính diện tích tam giác)
x/2=y/3=z/4=k thì x=2k, y=3k, z=4k thay vào (1) ta được:
2k.a=3k.b=4k.c suy ra a/6=b/4=c/3 (chia cho 12k)
Vậy 3 đường cao tương ứng tỉ lệ 6,3,4
Gọi độ dài 3 cạnh của tam giác lần lượt là a1; a2 và a3
và các đường cao tương ứng lần lượt là b1; b2 và b3
Theo bài ra ta có:
\(S=\frac{1}{2}\left(a1.b1\right)=\frac{1}{2}\left(a2.b2\right)=\frac{1}{2}\left(a3.b3\right)\)
\(\Rightarrow a1=\frac{2S}{b1};a2=\frac{2S}{b2};a3=\frac{2S}{b3}\)
Mà độ dài 3 cạnh của tam giác tỉ lệ với 4;6;8 \(\Rightarrow\frac{a1}{4}=\frac{a2}{6}=\frac{a3}{8}\)
\(\Rightarrow\frac{2S}{4b1}=\frac{2S}{6b2}=\frac{2S}{8b3}\)
\(\Rightarrow4b1=6b2=8b3\)
\(\Rightarrow\)3 đường cao của tam giác đó tỉ lệ với \(\frac{1}{4};\frac{1}{6};\frac{1}{8}\)
Gọi độ dài 3 cạnh tam giác lần lượt là x ; y ; z và 3 chiều cao là t; o; p .
Đặt \(x=\frac{2S}{t},y=\frac{2S}{o},z=\frac{2S}{p}\)(trong đó S là diện tích tam giác)
Vì độ dài 3 cạnh tam giác tỉ lệ vs 4; 6; 8
* Ta có: \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\Rightarrow\hept{\begin{cases}\frac{2S}{4t}\\\frac{2S}{6o}\\\frac{2S}{8p}\end{cases}}\)
\(\Rightarrow4t=6o=8p\Rightarrow\hept{\begin{cases}\frac{4t}{60}\\\frac{6o}{60}\\\frac{8p}{60}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{t}{15}\\\frac{o}{12}\\\frac{p}{10}\end{cases}}\)
Vậy KQ tìm đc là : 15; 12; 10