1) Cho điểm M nằm ngoài đường tròn (O;R) . Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O) (A,B là hai tiếp điểm).Gọi C là giao điểm của OM và AB . Vẽ đường kính AD của (O;R). Gọi Q là giao điểm khác D của MD và (O;R).Chứng minh:a) Các điểm M,A,O,B cùng thuộc một đường trònb)...
Đọc tiếp
1) Cho điểm M nằm ngoài đường tròn (O;R) . Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O) (A,B là hai tiếp điểm).Gọi C là giao điểm của OM và AB . Vẽ đường kính AD của (O;R). Gọi Q là giao điểm khác D của MD và (O;R).Chứng minh:
a) Các điểm M,A,O,B cùng thuộc một đường tròn
b) MQ.MD=MC.MO
a: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(2)
Từ (1) và (2) suy ra MO là đường trung trực của BA
=>MO\(\perp\)BA tại C và C là trung điểm của AB
Xét ΔMAO vuông tại A có AC là đường cao
nên \(MC\cdot MO=MA^2\left(3\right)\)
Xét (O) có
ΔAQD nội tiếp
AD là đường kính
Do đó: ΔAQD vuông tại Q
=>QA\(\perp\)QD tại Q
=>AQ\(\perp\)DM tại Q
Xét ΔADM vuông tại A có AQ là đường cao
nên \(MQ\cdot MD=MA^2\left(4\right)\)
Từ (3) và (4) suy ra \(MC\cdot MO=MQ\cdot MD\)