K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Bạn nên ghi đầy đủ điều kiện về x,y cũng như yêu cầu đề bài để mọi người hiểu đề và hỗ trợ tốt hơn.

3 tháng 7 2021

a, \(\left(5x-4\right)\left(5x+4\right)-\left(5x-4\right)^2=\left(25x^2-16\right)-\left(25x^2-40x+16\right)=40x-32\)

b,\(\left(5x+3\right)^2-\left(4x-1\right)^2-\left(9x^2+8\right)=\left(x+4\right)\left(9x-2\right)-\left(9x^2+8\right)\)

\(=9x^2+34x-8-\left(9x^2+8\right)=34x\)

c,\(2\left(x-5y\right)\left(x+5y\right)+\left(x+5y\right)^2+\left(x-5y\right)^2=\left(2x\right)^2=4x^2\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$A=(9x^2-5x)+(5y^2+3y)$

$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$

$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$

$\geq \frac{-103}{90}$

Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$

$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$

 

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 2:

a. 

$-A=4x^2+5y^2-8xy-10y-12$

$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$

$=(2x-2y)^2+(y-5)^2-37\geq -37$

$\Rightarrow A\leq 37$

Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$

$\Leftrightarrow x=y=5$

b.

$-B=3x^2+16y^2+8xy+5x-2$

$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$

$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$

$\geq \frac{-41}{8}$

$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$

$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$

7 tháng 1 2018

Vì (3x-2)^2010 và |5y-6z|^2011 >= 0

=> (3x-2)^2010 + |5y-6z|^2011 > = 0

=> (3x-2)^2010 + |5y-6z|^2011 = 0 <=> 3x-2=0 và 5y-6z=0

<=> x=3/2 và 5y=6z     => y=6/5z

Lại có :  2x-5y+3z=54

=> 2.3/2 - 5 . 6/5z + 3z=54

=> 3 - 6z + 3z = 54

=> 3-3z=54

=> 3z=3-54 = -51

=> z=-51 : 3 = -17

=> y = 6/5.(-17) = -102/5

Vậy ........

Tk mk nha

23 tháng 11 2019

\(\Rightarrow A\left(5x+5y\right)=3\left(5x^2-5y^2\right)\)
\(\Rightarrow A.5\left(x+y\right)=3.5\left(x^2-y^2\right)\)
\(\Rightarrow A.\left(x+y\right)=3\left(x+y\right)\left(x-y\right)\)
\(\Rightarrow A=3\left(x-y\right)=3x-3y\)

16 tháng 8 2018

a) Sửa đề

\(x^4+2x^3+x^2\)

\(=\left(x^4+x^3\right)+\left(x^3+x^2\right)\)

\(=x^3\left(x+1\right)+x^2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x^2\right)\)

\(=\left(x+1\right).x^2\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

b) \(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

c) \(5x^2-10xy+5y^2-20z^2\)

\(=5\left(x^2-2xy+y^2-4z^2\right)\)

\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

15 tháng 1 2022

Giúp tui với mấy bạn ơi

a) Ta có: \(3x^2+5y-3xy-5x\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

b) Ta có: \(3y^2-3z^2+3x^2+6xy\)

\(=3\left(y^2-z^2+x^2+2xy\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y-z\right)\left(x+y+z\right)\)

c) Ta có: \(x^2-25-2xy+y^2\)

\(=\left(x-y\right)^2-5^2\)

\(=\left(x-y-5\right)\left(x-y+5\right)\)

d) Ta có: \(5x^2-10xy+5y^2-20z^2\)

\(=5\left(x^2-2xy+y^2-4z^2\right)\)

\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

e) Ta có: \(x^2-5x+5y-y^2\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f) Ta có: \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)