K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

2M\(\le\)a(9b+4a+5b)+b(9a+4b+5a)  (AM-GM)

     =4(a2+b2)+28ab\(\le\)4(a2+b2)+14(a2+b2)  (AM-GM)

                                =36 (do a2+b2=2)

=> M \(\le\)18

 Dấu bằng có <=> a=b=1

14 tháng 5 2021

tại sao lai phá căn đc

30 tháng 9 2018

Áp dụng BĐT Cô-si cho 2 số không âm

Ta có: \(\sqrt{9b\left(4a+b\right)}\)\(\le\) \(\dfrac{9b+4a+5b}{2}\)=\(\dfrac{14b+4a}{2}\)

\(\Rightarrow\) \(a\sqrt{9b\left(4a+5b\right)}\)\(\le\) \(\dfrac{14ab+4a^2}{2}\)=7ab+2a2

CMTT: \(b\sqrt{9a\left(4b+5a\right)}\) \(\le\) 7ab+2b2

\(\Rightarrow\) M\(\le\) 14ab + 2(a2+b2) \(\le\)7(a2+b2) + 2(a2+b2) = 9(a2+b2)=18

Vậy Mmin=18

Dấu "=" xảy ra\(\Leftrightarrow\) a=b=1

30 tháng 9 2018

\(M=a\sqrt{9b\left(4a+5b\right)}+b\sqrt{9a\left(4b+5a\right)}\le\dfrac{a\left(9b+4a+5b\right)}{2}+\dfrac{b\left(9a+4b+5a\right)}{2}=\dfrac{a\left(14b+4a\right)+b\left(14a+4b\right)}{2}=2a^2+7ab+7ab+2b^2=2\left(a^2+b^2\right)+14ab=4+14ab\le4+14\times\dfrac{a^2+b^2}{2}=4+14=18\)

Dấu "=" xảy ra <=> a = b = 1

15 tháng 10 2016

Ta có \(2=a^2+b^2\ge2ab\)

\(\Leftrightarrow ab\le1\)

\(M\le\sqrt{\left(a^2+b^2\right)\left(36ab+45b^2+36ab+45a^2\right)}\)

\(=\sqrt{2\left(72ab+90\right)}\)\(\le\sqrt{2\left(72+90\right)}=\sqrt{324}=18\)

GTLN là 18 đạt được khi a = b = 1

21 tháng 4 2016

Áp dụng 2 lần Bunhia

13 tháng 2 2016

moi hok lop 6

5 tháng 12 2017

\(P=\frac{3\left(a+b\right)}{\sqrt{9a\left(4a+5b\right)}+\sqrt{9b\left(4b+5a\right)}}\)

\(\ge\frac{3\left(a+b\right)}{\frac{9a+4a+5b}{2}+\frac{9b+4b+5a}{2}}=\frac{1}{3}\)

5 tháng 12 2017

Ta có :

  \(P^1=\frac{a+b}{\sqrt{a\left(4a+5b\right)}+\sqrt{b\left(4b+5a\right)}}.\)

\(\Leftrightarrow P^2=\frac{3\left(a+b\right)}{\sqrt{9a\left(4a+5b\right)}+\sqrt{9b\left(4b+5a\right)}}\)

Mà ta thấy  biểu thức \(P^2\ge\frac{3\left(a+b\right)}{\frac{9a+4a+5b}{2}+\frac{9b+4b+5a}{2}}\)

                                     \(=\frac{1}{3}\)

Vậy giá trị nhỏ nhất của biểu thức \(P=\frac{1}{3}\)

     \(\)

3 tháng 8 2019

Áp dụng bđt bunhicopxki ta có:

\(\left(\sqrt{a\left(4a+5b\right)}+\sqrt{b\left(4b+5a\right)}\right)^2\le\left(a+b\right)\left(4a+5b+4b+5a\right)=9\left(a+b\right)^2\)

=> \(\sqrt{a\left(4a+5b\right)}+\sqrt{b\left(4b+5a\right)}\le3\left(a+b\right)\)

=>\(P\ge\frac{a+b}{3\left(a+b\right)}=\frac{1}{3}\)

dấu "=" xảy ra khi a=b

29 tháng 8 2021

undefined

undefined

Vậy GTNN là 1/3 (khi a = b)

1 tháng 2 2016

Em mới lớp 6

 Năm mới ròi mọi người tik mình làm quà đi

1 tháng 2 2016

có bài giải pt nào k , đăng lên đi