K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

18 tháng 12 2016

S = 3+3^2 + 3^3 +...+ 3^2016

= (3+3^2+3^3) +...+(3^2014+3^2015+3^2016)

=3(1+3+3^2) +.....+3^2014(1+3+32)

=13 ( 3+...+3^2014 ) chia hết cho 13

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$

$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$

$=1+13(3+3^4+...+3^{2014})$ 

$\Rightarrow A-1\vdots 13(1)$

Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$

$=1+40(3+....+3^{2013})$

$\Rightarrow A-1\vdots 5(2)$

Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$

$\Rightarrow A$ chia $65$ dư $1$

22 tháng 12 2021

em cảm ơn ạ

 

3 tháng 10 2015

b.ab+ba chia hết cho 11

=>10a+b + 10b+a chia hết cho 11

=>10a+a + 10b+b chia hết cho 11

=>11a+11b chia hết cho 11(đfcm)

10 tháng 12 2020

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

3A=3+3^2+3^3+....+3^2020

3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

2A= 3^2020-1

⇒ A =( 3^2020-1):2

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

⇒3A=3+3^2+3^3+....+3^2020

⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

⇒2A= 3^2020-1

⇒ A =( 3^2020-1):2