(32018-32017-32016) chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 3+3^2 + 3^3 +...+ 3^2016
= (3+3^2+3^3) +...+(3^2014+3^2015+3^2016)
=3(1+3+3^2) +.....+3^2014(1+3+32)
=13 ( 3+...+3^2014 ) chia hết cho 13
Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$
$=1+13(3+3^4+...+3^{2014})$
$\Rightarrow A-1\vdots 13(1)$
Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$
$=1+40(3+....+3^{2013})$
$\Rightarrow A-1\vdots 5(2)$
Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$
$\Rightarrow A$ chia $65$ dư $1$
b.ab+ba chia hết cho 11
=>10a+b + 10b+a chia hết cho 11
=>10a+a + 10b+b chia hết cho 11
=>11a+11b chia hết cho 11(đfcm)
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
3A=3+3^2+3^3+....+3^2020
3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
2A= 3^2020-1
⇒ A =( 3^2020-1):2
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
⇒3A=3+3^2+3^3+....+3^2020
⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
⇒2A= 3^2020-1
⇒ A =( 3^2020-1):2