Cho tam giác ABC, có trung tuyến AM, tia phân giác góc B cắt AM tại I, AC tại D. Trên tia đối của tia MI, lấy điểm K sao cho MI=MK
a, Chứng minh BICK là hình bình hành
b, CI cắt AB tại E. Chứng minh DE//BC
c, Chứng minh AB.DE=AE.BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MI//AC
Do đó: I là trung điểm của AB
Xét ΔBAC có
M,I lần lượt là trung điểm của BC,BA
=>MI là đường trung bình của ΔBAC
=>MI//AC và MI=AC/2
MI//AC
I\(\in\)MN
Do đó: MN//AC
Ta có: \(MI=\dfrac{AC}{2}\)
\(MI=\dfrac{MN}{2}\)
Do đó: MN=AC
Xét tứ giác ACMN có
MN//AC
MN=AC
Do đó: ACMN là hình bình hành
c: Xét ΔBAC có
M là trung điểm của CB
MK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
I,K lần lượt là trung điểm của AB,AC
=>IK là đường trung bình của ΔABC
=>IK//BC
=>IK//MQ
Ta có: ΔQAC vuông tại Q
mà QK là đường trung tuyến
nên \(QK=\dfrac{AC}{2}\)
mà MI=AC/2
nên QK=MI
Xét tứ giác MQIK có MQ//KI
nên MQIK là hình thang
Hình thang MQIK có MI=QK
nên MQIK là hình thang cân
a) ∆ABC có M, N lần lượt là trung điểm của AC, AB (gt) nên MN là đường trung bình của tam giác => MN // BC
b) Tứ giác AKCI có hai đường chéo IK và AC cắt nhau tại trung điểm của mỗi đường (AM = MC, IM = MK) nên là hình bình hành
c) ∆ABC có BM và CN là hai đường trung tuyến và P là trung điểm của BC nên AP là đường trung tuyến thứ ba => A, I, P thẳng hàng
Mà A, I, D thẳng hàng nên I, P, D thẳng hàng (đpcm)
d) Tứ giác AKCI là hình bình hành có đường chéo AC là phân giác của góc IAK nên là hình thoi => AC vuông góc IK
Do đó tam giác ABC phải cân tại B (có BM là đường cao cũng là trung tuyến)
Ở câu a từ trung tuyến suy ra được trung điểm luôn ah bạn?
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔCBM có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBM cân tại C
c: N ở đâu vậy bạn?
a: Xét ΔABC có
M là trung điểm của BC
I là trung điểm của AC
Do đó: MI là đường trung bình của ΔABC
Suy ra: MI//AB
hay MI\(\perp\)AC
Xét ΔCIM vuông tại I và ΔAID vuông tại I có
IC=IA
\(\widehat{ICM}=\widehat{IAD}\)
Do đó: ΔCIM=ΔAID
Suy ra: IM=ID
hay I là trung điểm của MD
Xét tứ giác AMCD có
I là trung điểm của MD
I là trung điểm của AC
Do đó: AMCD là hình bình hành
mà MD\(\perp\)AC
nên AMCD là hình thoi
a)
Xét tam giác AMB và tam giác DMC, ta có :
góc AMB = góc CMD
MA = MD
BM = MC
Suy ra tam giác AMB = tam giác DMC (c.g.c)
Suy ra: góc MAB = góc MDC
Mà hai góc ở vị trí so le trong
Do đó CD // AB
b)
Vì CD // AB mà AB ⊥ AC nên CD ⊥ AC
Xét hai tam giác vuông ABI và tam giác CDI
có AI = IC (I là trung điểm AC)
có AB = CD(hai cạnh tương ứng bằng nhau)
Vậy tam giác ABI = tam giác CDI
a: Xét ΔAMB và ΔANC có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔAIM vuông tại I và ΔAKN vuông tại K có
AM=AN
\(\widehat{IAM}=\widehat{KAN}\)
Do đó: ΔAIN=ΔAKN
Suy ra: AI=AK
tick nha
Giải thích các bước giải:
Có: MI=MK, M thuộc IK (GT)
Có: BM=MC, M thuộc BC (GT)
Mà IK giao BC tại M
=> Tứ giác BICK là hbh (dhnb)
(Hai đường chéo cắt nhau tại trung điểm mỗi đường)
1