Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có
BH chung
HA=HK
Do đó: ΔBHA=ΔBHK
=>BA=BK
=>\(\hat{BAK}=\hat{BKA}\)
b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)
\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)
mà \(\hat{BAK}=\hat{BKA}\)
nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)
Xét ΔBAD và ΔBKI có
\(\hat{BAD}=\hat{BKI}\)
BA=BK
\(\hat{ABD}\) chung
Do đó: ΔBAD=ΔBKI
=>BD=BI; AD=KI
Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)
nên IK//AK
=>AKDI là hình thang
Hình thang AKDI có AD=KI
nên AKDI là hình thang cân

a) Ta có AM=CN và AB=CD (vì ABCD là hình bình hành), nên ta có thể kết luận rằng AMCN là hình bình hành.
b) Ta cần chứng minh DMBN là hình bình hành.
Vì ABCD là hình bình hành, nên ta có AB || CD và AD || BC.
Do đó, ta có góc DAB = góc DCB và góc BAD = góc BCD.
Vì AM=CN, nên ta có góc MAB = góc NCD.
Từ đó, ta có góc DMB = góc DAB + góc MAB = góc DCB + góc NCD = góc NCB.
Vì AB || CD, nên góc DMB = góc NCB.
Vì AD || BC, nên góc DMB = góc BDN.
Từ đó, ta có góc DMB = góc NCB = góc BDN.
Vậy DMBN là hình bình hành.
Bạn tích cho mik nha!
Nhớ tick cho mik nha!
Để chứng minh tứ giác AMCN là hình bình hành, ta cần chứng minh rằng AM = CN và hai đường thẳng AM và CN là song song.
Vì am < cn, ta có thể kết luận rằng M nằm giữa A và B, và N nằm giữa C và D.
Gọi P là giao điểm của hai đường thẳng AM và CN.
Ta có:
AP = AM - MP
CP = CN - NP
Vì AM = CN và am < cn, nên AM - MP < CN - NP.
Do đó, AP < CP.
Từ đó, ta có thể kết luận rằng hai đường thẳng AM và CN là song song.
Vì AM = CN và hai đường thẳng AM và CN là song song, nên tứ giác AMCN là hình bình hành.
Để chứng minh tứ giác BMDN là hình bình hành, ta cần chứng minh rằng BM = DN và hai đường thẳng BM và DN là song song.
Vì AM = CN và AM < CN, nên M nằm giữa A và B, và N nằm giữa C và D.
Gọi Q là giao điểm của hai đường thẳng BM và DN.
Ta có:
BQ = BM - MQ
DQ = DN - NQ
Vì BM = DN và BM < DN, nên BM - MQ < DN - NQ.
Do đó, BQ < DQ.
Từ đó, ta có thể kết luận rằng hai đường thẳng BM và DN là song song.
Vì BM = DN và hai đường thẳng BM và DN là song song, nên tứ giác BMDN là hình bình hành.

a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC

a) Xét tứ giác ABCD có:
. M là trung điểm của BC ( AM là đường trung tuyến)
. M là tđ của AD ( gt)
Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
mà \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)
--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)
b) Ta có: \(IA\perp AC\)
\(CD\perp AC\)
\(\Rightarrow\) IA // CD
Xét tứ giác BIDC có:
. IA // CD (cmt)
\(\Rightarrow\) IB // CD ( B ϵ IA )
. AB =CD ( cạnh đối hcn ABCD )
mà AB = IB ( tính chất đối xứng)
\(\Rightarrow\) IB = CD ( cùng = AB )
Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)
\(\Rightarrow\) BC // ID ( cạnh đối hbh)
" đề câu c sai nha bạn"

a: Xét tứ giác ADCH có
M là trung điểm của AC
M là trung điểm của HD
Do đó: ADCH là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên ADCH là hình chữ nhật
b: Xét tứ giác ADHE có
HE//AD
HE=AD
Do đó:ADHE là hình bình hành
tick nha
Giải thích các bước giải:
Có: MI=MK, M thuộc IK (GT)
Có: BM=MC, M thuộc BC (GT)
Mà IK giao BC tại M
=> Tứ giác BICK là hbh (dhnb)
(Hai đường chéo cắt nhau tại trung điểm mỗi đường)
1