Cho tam giác ABC có góc A = 90 độ . Trên BC lấy điểm E sao cho BE=BA .Tia pg của góc B cắt AC tại M .
a) So sánh AM và EM
b)Tính số đo góc BEM
Giups em với ạ mai ktra đề cương r :(((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và tam giác EBD có:
+ ^ABD = ^EBD (do BD là phân giác ^B).
+ BD chung.
+ AB = BE (gt).
=> Tam giác ABD = Tam giác EBD (c - g - c).
=> DA = DE (2 cạnh tương ứng).
b) Tam giác ABD = Tam giác EBD (cmt).
=> ^BAD = ^BED (2 góc tương ứng).
Mà ^BAD = 90o (gt).
=> ^BED = 90o.
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác EBM có:
BM: chung
\(\widehat{ABM}\)=\(\widehat{EBM}\) (vì BM là phân giác \(\widehat{ABE}\))
AB = EB (GT)
Vậy tam giác ABM = tam giác EBM (c.g.c)
b/ Ta có: tam giác ABM = tam giác EBM (câu a)
=> AM = EM (2 cạnh tương ứng)
c/ Ta có: tam giác ABM = tam giác EBM (câu a)
=> \(\widehat{A}\)=\(\widehat{BEM}\)=900 (2 góc tương ứng)
a: Xét ΔABM và ΔEBM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔABM=ΔEBM
b: Ta có: ΔABM=ΔEBM
nên AM=EM
c: Ta có: ΔABM=ΔEBM
nên \(\widehat{BAM}=\widehat{BEM}=90^0\)
a) Xét \(\Delta ABM\)và \(\Delta\)EBM có :
AB = EB(gt)
BM chung
\(\widehat{M}_1=\widehat{M_2}\)
=> \(\Delta ABM=\Delta EBM\left(c.g.c\right)\)
b) Ta có : \(\Delta ABM=\Delta EBM\left(c.g.c\right)\)
=> \(\widehat{BAM}=\widehat{EBM}\)(hai góc tương ứng)
=> AM = EM
c) Lại có : \(\widehat{BAM}=\widehat{EBM}\)(hai góc tương ứng)
=> \(\widehat{BAM}=\widehat{EBM}=90^0\)
Hình vẽ đây mới đúng á,bạn sửa dùm mình \(\widehat{M_1}=\widehat{M_2}\)thành \(\widehat{B_1}=\widehat{B_2}\)nhé
a, Xét ABM và EBM có
AB = EB
ABM = EBM ( BM là tia phân giác của ABE)
BM là cạnh chung
=> ABM = EBM
b, có ABM = EBM (câu a)
=> AM = EM
c, có ABM = EBM (câu a)
=> góc BEM= góc BAM = 90
a/ Xét tam giác ABD và tam giác EBD có:
- Cạnh BD chung
- Góc ABD = góc DBE (vì BD là tia phân giác của góc ABE)
- BA = BE (gt)
Do đó tam giác ABD = tam giác EBD (c.g.c)
Suy ra DA = DE (2 cạnh tương ứng)
b/ Từ tam giác ABD = tam giác EBD => Góc A = góc BED (2 góc tương ứng)
Mà góc A = 90o nên góc EBD = 90o
a) Xét tam giác ABC và tam giác EBD có:
- Cạnh BD chung
-Góc ABD = góc EBD ( vì BD là tia pg của góc ABE
-BE=BA(gt)
Vậy tam giác ABC và tam giác EBD bằng nhau (C.g.c)
b)Từ câu a suy ra góc A = góc BED (2 góc t ứng)
mà góc A =90 độ suy ra góc BED =90 độ
a: Xét ΔBAM và ΔBEM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔBAM=ΔBEM
=>MA=ME
b: Ta có: ΔBAM=ΔBEM
=>\(\widehat{BAM}=\widehat{BEM}\)
mà \(\widehat{BAM}=90^0\)
nên \(\widehat{BEM}=90^0\)