cho rằng 2/(x-2) - 2/(x+2)=2,tìm(x2 +1)2
mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)
c: Để A=3/4 thì 4x-8=3x+6
=>x=14
d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
\(\Delta=\left(m-1\right)^2+8>0;\forall m\) nên pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)
\(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=1\)
\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}\right)^2+\left(\dfrac{x_2-1}{x_2+1}\right)^2=1\)
\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}+\dfrac{x_2-1}{x_2+1}\right)^2-2\left(\dfrac{x_1-1}{x_1+1}\right)\left(\dfrac{x_2-1}{x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{\left(x_1-1\right)\left(x_2+1\right)+\left(x_1+1\right)\left(x_2-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{2x_1x_2-2}{x_1x_2+x_1+x_2+1}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{-6}{m-2}\right)^2+2\left(\dfrac{m}{m-2}\right)=1\)
\(\Leftrightarrow36\left(\dfrac{1}{m-2}\right)^2+4\left(\dfrac{1}{m-2}\right)+1=0\)
Pt trên vô nghiệm nên ko tồn tại m thỏa mãn yêu cầu
Tới đó đặt \(\dfrac{1}{m-2}=t\) là thành 1 pt bậc 2 bình thường, bấm máy thấy nó vô nghiệm là đủ kết luận rồi em
Có: \(\dfrac{2}{x-2}-\dfrac{2}{x+2}=2\left(dkxd:x\ne\pm2\right)\)
\(\Rightarrow2\cdot\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)=2\)
\(\Rightarrow\dfrac{1}{x-2}-\dfrac{1}{x+2}=1\)
\(\Rightarrow\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=1\)
\(\Rightarrow\dfrac{x+2-x+2}{x^2-4}=1\)
\(\Rightarrow\dfrac{4}{x^2-4}=1\)
\(\Rightarrow x^2-4=4\)
\(\Rightarrow x^2=8\)
Thay \(x^2=8\) vào \(\left(x^2+1\right)^2\), ta được:
\(\left(8+1\right)^2=9^2=81\)
\(\dfrac{2}{x-2}\) - \(\dfrac{2}{x+2}\) - 2 = 0
2.(\(\dfrac{1}{x-2}\) - \(\dfrac{1}{x+2}\) - 1) = 0
\(\dfrac{1}{x-2}\) - \(\dfrac{1}{x+2}\) - 1 = 0
\(\dfrac{x+2-\left(x-2\right)-\left(x-2\right).\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\) = 0
\(x\) + 2 - \(x\) + 2 - (\(x^2\) + 2\(x\) - 2\(x\) - 4) = 0
4 - \(x^2\) + 4 = 0
8 - \(x^2\) = 0
\(x^2\) = 8
Thay \(x^2\) = 8 vào ( \(x^2\) + 1)2 ta có: (\(x^2\) + 1) = (8 + 1)2 = 92 = 81