Tìm số chính phương có 4 chữ số là:
a) 0;2;3;4
b) 3;6;8;8
Mình cần gấp, các bạn giải nhanh giúp mình :)))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
Gọi số tự nhiên phải tìm là abcd(a,d\(\ne\)0; a,b,c,d <10)
Vì số chính phương có 4 chữ số có 2 chữ số đầu và 2 chữ số cuối ( không đổi thứ tự các chữ số) tạo thành 2 số chính phương
=> ab và cd à 2 số chính phương.
TH1: Nếu ab=cd, mà ab và cd là 2 số chính phương
=>ab\(\in\){ 16; 25;36;49;64;81}
cd\(\in\){16;25;36;49;64;81}
Ta được các số 1616;2525;3636;4949;6464;8181
Ta thấy: 1616;2525;4949;6464 chia cho 3 đều dư 2( do 1+6+1+6; 2+5+2+5;4+9+4+9;6+4+6+4 đều chia cho 3 dư 2)
Mà số chính phương chia cho 3 dư 0 hoặc 1
=> 4 số trên đều không phải là số chính phương
TH2: Nếu ab\(\ne\)cd; mà cd và ab là 2 số chính phương
=> Ta lập được các số
1625;2516; 3616; 4916;6416;8116
1636; 2536;3625;4925;6425;8125
1649; 2549;3649;4936;6436;8136
1664;2564;3664;4964;6449;8149
1681 ; 2581; 3681;4981;6481;8164
Mà số chính phương chia cho 3 dư 0;1
=>Các số 1625;1664;1649;2516;2549;2564;4916;4925; 4964;6416;6425;6449 không phải là số chính phương.
Sau đó phân ích các số còn lại ra thừa số nguyên tố rồi thử chọn
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
b) 8836
8836 nha ban