cho x,y,z nguyen duong, nguyen to cung nhau va 1/x +1/y =1/z. c/m x+y la scp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)
giả sử tồn tại x, y, z thỏa mãn đk đầu bài suy ra: 1/x+1/y = 1/z (x,y,z khác 0) suy ra: z.(x+y)= x.y k thể có /z/ >1 vì đôi lúc z có duy nhất 1 ước nguyên tố p > hoặc = 2 suy ra: p phải là ước của x hoặc y vô lý vì (x,z)=(y,z) = 1 Vậy z = -1,1 với z = -1 suy ra: x+y= xy suy ra: (x+1).(y+1) =1 suy ra: x+1 = -1 và y +1 = -1
suy ra ra: x=y=-2 suy ra: x,y có chung ước 2 vô lý vì (x,y)=1 Với z =1 suy ra: x+y = xy suy ra : (x-1).(y-1) = 1 suy ra: x-1 = 1 va y-1=1 suy ra: x=y=2 vo ly vi (x,y)= 1 vay k ton tai x,y thỏa mãn đk bài toán