Bài 1. Chứng minh rằng ; 5^1+5^2+5^3+...+5^2004 chia hết cho 126
Bài 2: x+2y+xy=50
Các bạn ơi giúp mình với! mình cần gấp... trả lời 1 trong 2 bài cũng được, mk sẽ tích cho ai trả lời nhanh nhất.( Trình bày cả cách giải)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)