Tìm số nguyên x:
42:(x2+5)=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $15-(-2x)=22+3x$
$15+2x=22+3x$
$15-22=3x-2x$
$-7=x$
b.
$5(17-3x)+24=4$
$5(17-3x)=4-24=-20$
$17-3x=-20:5=-4$
$3x=17-(-4)=21$
$x=21:3=7$
c.
$42:(x^2+5)=3$
$x^2+5=42:3=14$
$x^2=14-5=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $x=-3$
d.
$73-3x^2=5^6:(-5)^4=(-5)^6:(-5)^4=(-5)^2=25$
$3x^2=73-25=48$
$x^2=48:3=16=4^2=(-4)^2$
$\Rightarrow x=4$ hoặc $x=-4$
Lời giải:
$(x^2-15)(x^2-20)<0$. Mà $x^2-15> x^2-20$ nên: $x^2-15>0$ và $x^2-20<0$
$x^2-20<0\Rightarrow x^2< 20< 25$
$\Rightarrow -5< x< 5$. Mà $x$ nguyên nên $x\in \left\{-4; -3; -2; -1; 0; 1; 2; 3; 4\right\}$
Mà $x^2-15>0$ nên $x\in \left\{-4; 4\right\}$
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
a) (x - 2)(x + 3) < 0 (1)
Do x là số nguyên nên x - 2 < x + 3
(1) x - 2 < 0 và x + 3 > 0
*) x - 2 < 0
x < 0 + 2
x < 2
*) x + 3 > 0
x > 0 - 3
x > -3
Vậy -3 < x < 2
42 : (\(x^2\) + 5) = 3
\(x^2\) + 5 = 42 : 3
\(x^2\) + 5 = 14
\(x^2\) = 14 - 5
\(x^2\) = 9
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 3}