b) Cho đường thẳng (d): y = (k – 1)x - 4 (k là tham số). Tìm k để (d) cắt trục Ox tại điểm có hoành độ không vượt quá 1.
Giúp mik vs mn oii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(d) cắt trục Ox nên ta có phương trình hoành độ:
(k - 1)\(x\) - 4 = 0 (k ≠ 1)
(k - 1)\(x\) = 4
\(x\) = \(\dfrac{4}{k-1}\)
Theo bài ra ta có:
\(\dfrac{4}{k-1}\) ≤ 1
\(\dfrac{4}{k-1}\) - 1 ≤ 0
\(\dfrac{4-k+1}{k-1}\) ≤ 0
\(\dfrac{5-k}{k-1}\) ≤ 0
A = \(\dfrac{5-k}{k-1}\) ≤ 0
lập bảng xét dấu ta có:
k | 1 5 |
5 - k | + + 0 - |
k - 1 | - 0 + + |
A = \(\dfrac{5-k}{k-1}\) | - || + 0 - |
Theo bảng trên ta có: k < 1 hoặc k ≥ 5
a: Tọa độ A là;
\(\left\{{}\begin{matrix}y=0\\-x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\-x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
Vậy: A(3;0)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-x+3=-0+3=3\end{matrix}\right.\)
Vậy: B(0;3)
O(0;0); A(3;0); B(0;3)
\(OA=\sqrt{\left(3-0\right)^2+\left(0-0\right)^2}=3\)
\(OB=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=\sqrt{0^2+3^2}=3\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{9}{2}\)
b:
Để (d1) cắt (d2) thì k+1<>-1
=>k<>-2
Phương trình hoành độ giao điểm là:
(k+1)x+1=-x+3
=>(k+1)x+x=2
=>x(k+2)=2
=>\(x=\dfrac{2}{k+2}\)
Để hoành độ là số nguyên nhỏ nhất thì \(\dfrac{2}{k+2}\) là số nguyên nhỏ nhất có thể
=>k+2=-1
=>k=-3
a, b=k=0
b,(2k-1).3+k=0 => 3k=3 => k =1
c, 2k-1 = 3/5=> 2k = 8/5 => k = 4/5 khác 4 vậy k = 4/5
d, (2k-1)(-3) +k =2 => -5k =-1 => k =1/5
Đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 1 khi:
Vậy đường thẳng (d) không cắt trục hoành tại điểm có hoành độ bằng 1 với mọi giá trị của k ≥ 0.
Nói các khác, đường thẳng y = k + 1 3 - 1 . x + k + 3 không bao giờ cắt trục hoành tại điểm có hoành độ bằng 1.
b) (d) cắt trục hoành tại điểm có hoành độ bằng 5 khi
0 = (2 - k).5 + k - 1 ⇒ 9 - 4k = 0 ⇒ k = 9/4
a: Vì \(\left(d\right)\) đi qua \(A\left(1;2\right);B\left(-3;4\right)\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}k+k'-3=2\\-3\left(k-3\right)+k'=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k+k'=5\\-3k+k'=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4k=10\\k+k'=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{2}{5}\\k'=\dfrac{23}{5}\end{matrix}\right.\)
(d) cắt Ox nên ta có phương trình hoành độ:
(k - 1)\(x\) - 4 = 0
(k - 1)\(x\) = 4
\(x\) = \(\dfrac{4}{k-1}\) (k ≠ 1)
Theo bài ra ta có:
\(\dfrac{4}{k-1}\) ≤ 1
⇒ \(\dfrac{4}{k-1}\) - 1 ≤ 0
\(\dfrac{4-k-1}{k-1}\) ≤ 0
\(\dfrac{5-k}{k-1}\) ≤ 0
A = \(\dfrac{5-k}{k-1}\) ≤ 0
Lập bảng ta có:
Theo bảng trên ta có: 1 < k hoặc k ≥ 5
Kl:...