K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2023

loading...  loading...  loading...  

21 tháng 12 2023

camon<33

NV
3 tháng 1 2024

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

NV
3 tháng 1 2024

loading...

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

c: Xét (O) có 

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

Xét ΔBAD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)

hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có 

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{HAE}\) chung

Do đó: ΔAEH\(\sim\)ΔAOD

Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)

21 tháng 12 2021

a: Xét tứ giác OMAN có 

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

8 tháng 3 2022

a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm 

=> ^AMO = ^ANO = 900

mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R 

Vậy OA là đường trung trực đoạn MN => OA vuông MN 

Xét tứ giác AMON có 

^AMO + ^ANO = 1800

mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM có 

^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g)

\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)

c, Xét tam giác OMA vuông tại M, đường cao MH 

Ta có \(AM^2=AH.AO\)( hệ thức lượng ) 

=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)

Xét tam giác ABH và tam giác AOC có 

^A _ chung 

\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( góc ngoài đỉnh B )

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

d, Ta có BHOC nt 1 đường tròn (cmc) 

=> ^OHC = ^OBC (góc nt chắc cung CO) 

=> ^AHB = ^ACO (góc ngoài đỉnh H) 

mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O

=> ^OHC = ^AHB 

mà ^CHN = 900 - ^OHC 

^NHB = 900 - ^AHB 

=> ^CHN = ^NHB 

=> HN là phân giác của ^BHC 

26 tháng 3 2022

a, Ta có AM ; AN lần lượt là tiếp tuyến (O) 

=> ^AMO = ^ANO = 900

Xét tứ giác AMON có ^AMO + ^ANO = 1800 

mà 2 góc này đối 

Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM ta có 

^A _ chung ; ^AMB = ^ACM ( cùng chắn BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g) 

c, Ta có AM = AN ( tc tiếp tuyến cắt nhau ) 

ON = OM = R => OA là đường trung trực đoạn MN 

Xét tam giác AMO vuông tại M, đường cao MH 

=> AM^2 = AH.AO 

=> AB . AC = AH . AO => AB/AO = AH/AC 

Xét tam giác ABH và tam giác AOC có

^A _ chung ; AB/AO = AH/AC (cmt) 

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( mà ^ABH là góc ngoài đỉnh B ) 

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

 

a Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

=>OH*OA=OB^2=R^2

b: góc ABM=góc ACM

góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM

=>BM là phân giác của góc ABH