Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMON có
\(\widehat{OMA}+\widehat{ONA}=180^0\)
Do đó: OMAN là tứ giác nội tiếp
a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm
=> ^AMO = ^ANO = 900
mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R
Vậy OA là đường trung trực đoạn MN => OA vuông MN
Xét tứ giác AMON có
^AMO + ^ANO = 1800
mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn
b, Xét tam giác AMB và tam giác ACM có
^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM )
Vậy tam giác AMB ~ tam giác ACM (g.g)
\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)
c, Xét tam giác OMA vuông tại M, đường cao MH
Ta có \(AM^2=AH.AO\)( hệ thức lượng )
=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)
Xét tam giác ABH và tam giác AOC có
^A _ chung
\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)
Vậy tam giác ABH ~ tam giác AOC (c.g.c)
=> ^ABH = ^AOC ( góc ngoài đỉnh B )
Vậy tứ giác BHOC là tứ giác nt 1 đường tròn
d, Ta có BHOC nt 1 đường tròn (cmc)
=> ^OHC = ^OBC (góc nt chắc cung CO)
=> ^AHB = ^ACO (góc ngoài đỉnh H)
mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O
=> ^OHC = ^AHB
mà ^CHN = 900 - ^OHC
^NHB = 900 - ^AHB
=> ^CHN = ^NHB
=> HN là phân giác của ^BHC
a, Ta có AM ; AN lần lượt là tiếp tuyến (O)
=> ^AMO = ^ANO = 900
Xét tứ giác AMON có ^AMO + ^ANO = 1800
mà 2 góc này đối
Vậy tứ giác AMON là tứ giác nt 1 đường tròn
b, Xét tam giác AMB và tam giác ACM ta có
^A _ chung ; ^AMB = ^ACM ( cùng chắn BM )
Vậy tam giác AMB ~ tam giác ACM (g.g)
c, Ta có AM = AN ( tc tiếp tuyến cắt nhau )
ON = OM = R => OA là đường trung trực đoạn MN
Xét tam giác AMO vuông tại M, đường cao MH
=> AM^2 = AH.AO
=> AB . AC = AH . AO => AB/AO = AH/AC
Xét tam giác ABH và tam giác AOC có
^A _ chung ; AB/AO = AH/AC (cmt)
Vậy tam giác ABH ~ tam giác AOC (c.g.c)
=> ^ABH = ^AOC ( mà ^ABH là góc ngoài đỉnh B )
Vậy tứ giác BHOC là tứ giác nt 1 đường tròn
a: Xét tứ giác ABOC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.
b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà
- \(\widebat{OA}\)=\(\widebat{OB}\)→\(\widehat{AMO}\)=.\(\widehat{OAB}\)=\(\widehat{OAI}\)Xét tam giác OAI và tam giác OMA: \(\widehat{O}\)chung ,\(\widehat{OAI}\)=\(\widehat{AMO}\)\(\Rightarrow\)hai tam giác đồng dạng (g.g) \(\Rightarrow\)\(\frac{OI}{OA}\)=\(\frac{OA}{OM}\)\(\Leftrightarrow\)OI.OM=\(^{OA^2}\)=Rbình.
- c)
a: Xét tứ giác OMAN có
\(\widehat{OMA}+\widehat{ONA}=180^0\)
Do đó: OMAN là tứ giác nội tiếp