K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

.

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:

Áp dụng định lý Fermat nhỏ thì:

$2020^6\equiv 1\pmod 7$

$\Rightarrow (2020^6)^{336}.2020^4\equiv 1^{336}.2020^4\equiv 2020^4\pmod 7$

Có:

$2020\equiv 4\pmod 7$

$\Rightarrow 2020^4\equiv 4^4\equiv 256\equiv 4\pmod 7$

$\Rightarrow A\equiv 2020^4\equiv 4\pmod 7$

Vậy $A$ chia $7$ dư $4$

5 tháng 11 2021

giúp nhanh lên

23 tháng 11 2021

cứ như thế số dư bằng 0

14 tháng 7 2023

\(S=1+2-3-4+5+6-7-8+9-10-...+2018-2019-2020-2021\)

\(S=1+\left(2-3\right)-4+5+\left(6-7\right)-8+9-10-...+\left(2018-2019\right)-2020-2021\)

\(S=1-1+1-1+...-1-2020-2021=-1-2020-2021=-4042\)

b) Tích của số chia và thương là :

\(89-12=77\)=7.11

⇒ Số chia là 11; thương là 7

 

14 tháng 7 2023

cộng 2021 nha bn

 

DD
2 tháng 3 2021

a) \(M=2020+2020^2+...+2020^{10}\)

\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)

\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)

\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).

b) Bạn làm tương tự câu a). 

2 tháng 3 2021

b, \(A=2021+2021^2+...+2021^{2020}\)

\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)

\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)

Vậy ta có đpcm 

1 tháng 8 2023

\(A=1+2+2^2+...+2^{2020}+2^{2021}+2^{2023}\)

\(A=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2020}\left(1+2+2^2\right)-2^{2022}+2^{2023}\)

\(A=1+2.7+2^4.7+...+2^{2020}.7-2^{2022}+2^{2023}\)

\(A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\left(1\right)\)

Ta có :

\(2^3=8\equiv1\) (mod 7)

\(\Rightarrow\left(2^3\right)^{674}\equiv1^{674}=1\) (mod 7)

\(\Rightarrow2^{2022}\equiv1\) (mod 7)

\(\Rightarrow2^{2022}+1\equiv1+1=2\)  (mod 7)

\(\Rightarrow2^{2022}+1\equiv2\) (mod 7)

mà \(7\left(2+2^4+...+2^{2020}\right)⋮7\)

\(\left(1\right)\Rightarrow A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\equiv2\) (mod 7)

Vậy số dư của A khi chia cho 7 là 2

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

4 tháng 8 2020

Ta có : 2019.2021 = (2020 - 1).(2020 + 1)

                              =  2020.2020 + 2020 - 2020 - 1.1

                              = 2020.2020 - 1 = 2020.2019 + 2020 - 1 

                              = 2020.2019 + 2019

Vì 2020.2019 \(⋮\)2020

mà 2019 : 2020 = 0 dư 2019

=> 2020.2019 + 2019 : 2020 dư 2019

hay 2019.2021 : 2020 dư 2019

C1:Ta có:\(2019\equiv-1\left(mod2020\right)\)

          \(2021\equiv1\left(mod2020\right)\)

\(\Rightarrow2019.2021\equiv\left(-1\right).1\left(mod2020\right)\)

\(\Rightarrow2019.2021\equiv-1\left(mod2020\right)\)hay 2019.2021 chia 2020 dư 2019

C2:Ta có:\(2019.2021=2019.\left(2020+1\right)=2019.2020+2019\)

Vì 2019.2020 chia hết cho 2020 và 2019 chia 2020 dư 2019 nên 2019.2020+2019 chia 2020 dư 2019 hay 2019.2021 chia 2020 dư 2019

29 tháng 3 2020

2019^2020 tận cùng là 1, 2021^2019 tận cùng là 1 => 2019^2020 + 2021^2019 + 2022 tận cùng là 4 suy ra số dư là 4

4 tháng 5 2021

Ta có:

\(A=\dfrac{7\left(4-7^{2020}\right)}{7^{2021}}+\dfrac{5+7^{2021}}{7^{2021}}\)

\(A=\dfrac{28-7^{2021}+5+7^{2021}}{7^{2021}}=\dfrac{33}{7^{2021}}\)

Ta có: \(B=\dfrac{7^2}{7^{2021}}=\dfrac{49}{7^{2021}}\)

=> B>A

 

4 tháng 5 2021

Thank you☺