cho tam giác ABC vuông tại C (A<B),đường cao CH .Tren AB lay O sao cho OB=\(\frac{1}{3}\) OA.kẻ OD vuông góc với AC .Biết OD =OB.CM AB=9HB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(=>90^o+40^o+\widehat{C}=180^o\)
\(=>\widehat{C}=180^o-90^o-40^o=50^o\)
Vậy \(\widehat{C}=50^o\)
------------------------------------------
+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)
\(=>\widehat{A}+\widehat{C}=180^o-90^o\)
\(=>3.\widehat{C}=90^o\)
\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)
Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)
1: góc C=90-40=50 độ
2: góc A=2/3*90=60 độ
góc C=90-60=30 độ
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Sửa đề: Lấy E thuộc BC sao cho BE=BA
a: Chứng minh ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
=>ΔDEC vuông tại E
c: Sửa đề: Tia BA cắt ED tại F
Ta có: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
a) Xét tam giác ABC và ADE vuông tại A
+) AB=AD
+) AC=AE
=> tam giác ABC bằng tam giác ADE
=> BC= DE
b)
TA có tam giác ABD và ACE đều vuông cân tại A
=> góc ABD = ADB= ACE=AEC = 45
=> BD//CE (có 2 góc so le trong bằng nhau)
c) Gọi đường NA cắt MC tại I
Xét tam giác NMC có 2 đường cao MH và NI cắt nhau tại A
=> A là trực tâm tam giác NMC
=> CA là đường cao thứ ba
=> CA ⊥ MN
d)
Ta chứng minh được tam giác ADM và AME cân tại M
Suy ra MD=MA và MA=ME
=> MD=ME=MA
=> MA=DE/2
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC đồng dạng với ΔHAC
b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có
\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔKHB đồng dạng với ΔKAH
=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)
=>\(KH^2=KA\cdot KB\)
c: Ta có: ΔAHC vuông tại H
=>\(HC^2+HA^2=AC^2\)
=>\(HA^2=10^2-8^2=36\)
=>\(HA=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)
BC=BH+CH
=4,5+8
=12,5(cm)
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)