Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÁC ĐỊNH K ĐỂ PHƯƠNG TRÌNH x2 + 2x + k =0 có hai nghiệm thỏa mãn 1/x1 + 1/x2 =1/4
Lời giải:Để pt có 2 nghiệm thì: $\Delta'=1-k\geq 0\Leftrightarrow k\leq 1$Áp dụng định lý Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-2$
$x_1x_2=k$
$x_1,x_2\neq 0\Leftrightarrow x_1x_2\neq 0\Leftrightarrow k\neq 0$
Khi đó:
$\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{4}$
$\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{4}$
$\Leftrightarrow \frac{-2}{k}=\frac{1}{4}\Leftrightarrow k=-8$ (tm)
Lời giải:
Để pt có 2 nghiệm thì: $\Delta'=1-k\geq 0\Leftrightarrow k\leq 1$
Áp dụng định lý Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-2$
$x_1x_2=k$
$x_1,x_2\neq 0\Leftrightarrow x_1x_2\neq 0\Leftrightarrow k\neq 0$
Khi đó:
$\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{4}$
$\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{4}$
$\Leftrightarrow \frac{-2}{k}=\frac{1}{4}\Leftrightarrow k=-8$ (tm)