Tìm x:
a) x^2 -2x +1 = 9
b)x^2- 4x+4 = 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
a) 32 : (3.x - 2) = 8
3x - 2 = 32 : 8
3x - 2 = 4
3x = 4 + 2
3x = 6
x = 6 : 3
x = 2
b) 75 : (x - 18) = 25
x - 18 = 75 : 25
x - 18 = 3
x = 3 + 18
x = 21
c) (15 - 6.x) . 243 = 729
15 - 6x = 729 : 243
15 - 6x = 3
6x = 15 - 3
6x = 12
x = 12 : 6
x = 2
d) 4.(x - 12) + 9 = 17
4(x - 12) = 17 - 9
4(x - 12) = 8
x - 12 = 8 : 4
x - 12 = 2
x = 2 + 12
x = 14
e) 20 - 2.(x + 4) = 4
2(x + 4) = 20 - 4
2(x + 4) = 16
x + 4 = 16 : 2
x + 4 = 8
x = 8 : 2
x = 4
`32: ( 3xx x -2)=8`
`3xx x-2=32:8`
`3xx x-2=4`
`3 xx x=4+2`
`3xx x=6`
`x=6:3`
`x=2`
__
`75 : (x-18) =25`
`x-18=75:25`
`x-18= 3`
`x=3+18`
`x=21`
__
`(15-6 xx x ) xx 243 =729`
`15-6 xx x = 729 : 243`
`15-6 xx x = 3`
`6 xx x=15-3`
`6 xx x=12`
`x=12:6`
`x=2`
__
`4 xx (x-12)+9=17`
`4 xx (x-12)=17-9`
`4 xx (x-12)= 8`
`x-12=8:4`
`x-12=2`
`x=2+12`
`x=14`
__
`20-2xx(x+4)=4`
`2xx(x+4)=20-4`
`2xx(x+4)=16`
`x+4=16:2`
`x+4=8`
`x=8-4`
`x=4`
\(a,\sqrt{9x^2}=2x+1\\ \Leftrightarrow\left[{}\begin{matrix}3x=2x+1,\forall x\ge0\\-3x=2x+1,\forall x< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1,\forall x\ge0\left(N\right)\\x=-1,\forall x< 0\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-1,\forall x+3\ge0\\x+3=1-3x,\forall x+3< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2,\forall x\ge-3\left(N\right)\\x=-\dfrac{1}{2},\forall x< -3\left(L\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(c,\sqrt{x^2-2x+4}=2x-3\left(x\in R\right)\\ \Leftrightarrow x^2-2x+4=\left(2x-3\right)^2\\ \Leftrightarrow x^2-2x+4=4x^2-12x+9\\ \Leftrightarrow3x^2-10x+5=0\\ \Delta=100-4\cdot3\cdot5=40\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10-\sqrt{40}}{6}\\x=\dfrac{10+\sqrt{40}}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{10}}{3}\\x=\dfrac{5+\sqrt{10}}{3}\end{matrix}\right.\)
\(a.\sqrt{9x^2}=2x+1\)
<=> \(\sqrt{9}x=2x+1\)
<=> 3x = 2x + 1
<=> 3x - 2x = 1
<=> x = 1
a) ĐK: x ≥ 2
\(\sqrt{3x-6}=3\)
\(\Leftrightarrow3x-6=9\)
<=> 3x = 15
<=> x = 5
Vậy:....
b) ĐK: 5x - 16 ≥ 0
<=> 5x ≥ 16
<=> x ≥ 16/5
\(\sqrt{5x-16}=2\)
<=> 5x - 16 = 4
<=> 5x = 20
<=> x = 4
c) ĐK: \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
bình phương hai vế ta được:
a)điều kiện của x:x≥2
3x-6=9 <=> x=5(nhận)
b)ĐK: x≥16/5
5x-16=4 <=>x=4(nhận)
c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)= \(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)
ĐKXĐ: x≠3 ;x≠1
b) Ta có: \(\dfrac{x-2}{4}=\dfrac{2x+1}{3}\)
\(\Leftrightarrow3\left(x-2\right)=4\left(2x+1\right)\)
\(\Leftrightarrow3x-6=8x+4\)
\(\Leftrightarrow3x-8x=4+6\)
\(\Leftrightarrow-5x=10\)
hay x=-2
Vậy: x=-2
\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
\(a,x^2-2x+1=9\)
\(\Leftrightarrow\left(x-1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
Vậy...
\(b,x^2-4x+4=16\)
\(\Leftrightarrow\left(x-2\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=4\\x-2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)
Vậy...
trình bày như này nhé, lớp 7 chưa học hằng đẳng thức đâu bạn
a, \(x^2-2x+1=9\Leftrightarrow x^2-x-x+1=9\)
\(\Leftrightarrow x\left(x-1\right)-\left(x-1\right)=9\Leftrightarrow\left(x-1\right)^2=9\)
TH1 : \(x-1=3\Leftrightarrow x=4\)
TH2 : \(x-1=-3\Leftrightarrow x=-4\)
b, \(x^2-4x+4=16\)
\(\Leftrightarrow x^2-2x-2x+4=16\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)=16\)
\(\Leftrightarrow\left(x-2\right)^2=16\)
TH1 : \(x-2=4\Leftrightarrow x=6\)
TH2 : \(x-2=-4\Leftrightarrow x=-2\)