K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

1a,Ta có Nếu n chia 5 dư 4,1\(\Rightarrow\) n2chia 5 dư 4

                                         \(\Rightarrow\)   n2+a \(⋮\)5 \(\Rightarrow\)A\(⋮\) 5

 Nếu n chia 5 dư 2 ,3   \(\Rightarrow\)n2 chia 5 dư 1

                                   \(\Rightarrow\)n2 +1 \(⋮\)5

Nếu n \(⋮\)5 \(\Rightarrow\)A\(⋮\)5

Câu b mình sẽ nhắn tin cho bn nha

21 tháng 8 2017

Thank you cau b hơi khó hiểu đó

14 tháng 8 2017

Ta phân tích A=n(n2+1)(n2+4)=n(n+1)(n−1)(n+2)(n−2)A=n(n2+1)(n2+4)=n(n+1)(n−1)(n+2)(n−2)
a)Vì A là tích 5 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho 5.
b)Do A là tích 5 số tự nhiên liên tiếp nên luôn tồn tại một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 4, một số chia hết cho 5. Tức A chia hết cho 2.3.4.5 = 120. Vậy với mọi n nguyên thì A chia hết cho 120.

9 tháng 2 2022

Không biết đề có vấn đề không nữa, tại vì không có cách nào để rút được c ra hết do f(n+1)-f(n) kiểu gì c cũng bị khử. Tuy nhiên nếu xét trường hợp với mọi c thì thay n=3 trở lên giải ngược lại không có nghiệm c nào thỏa mãn hết hehe nên là mình nghĩ đề sẽ kiểu "với n=1 hoặc n=2" . Theo mình nghĩ là vậy...

Giả sử n=1 ta có: 

\(f\left(1+1\right)-f\left(1\right)=1\Leftrightarrow f\left(2\right)-f\left(1\right)=1\Leftrightarrow4a+2b+c-a-b-c=1\Leftrightarrow3a+b=1\) (1)

Giả sử n=2 ta có: 

\(f\left(2+1\right)-f\left(2\right)=4\Leftrightarrow f\left(3\right)-f\left(2\right)=4\Leftrightarrow9a+3b+c-4a-2b-c=4\Leftrightarrow5a+b=4\) (2)

Từ (1) và (2) ta có: \(\left\{{}\begin{matrix}3a+b=1\\5a+b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\) 

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{7}{2}x+c\) (với c là hằng số bất kì)

 

9 tháng 11 2021

\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)

Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn

Do đó \(n\left(n+1\right)+1\) lẻ

Vậy \(n^2+n+1⋮̸4\)

9 tháng 11 2021

a) chịu

b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)

NV
20 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

25 tháng 9 2019

27 tháng 8 2018

Đáp án A

10 tháng 8 2022

a: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b: \(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

26 tháng 1 2022

a, \(n^2+5=n^2+n-n-1+6=n\left(n+1\right)-\left(n+1\right)+6\)

\(\Rightarrow n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n + 11-12-23-36-6
n0-21-32-45-7

 

b, tương tự