TÌM X:
12x (6x-5) +3(6x-5)-8x(9x-2)-3(9x-2)=203
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3(6x−5)(4x+1)−(8x+3)(9x−2)=2033(6x−5)(4x+1)−(8x+3)(9x−2)=203
⇒3(24x2+6x−20x−5)−(72x2−16x+27x−6)=203⇒3(24x2+6x−20x−5)−(72x2−16x+27x−6)=203
⇒72x2−42x−15−72x2−11x+6=203⇒72x2−42x−15−72x2−11x+6=203
⇒−53x=203−6+15=212⇒−53x=203−6+15=212
nhầm òi
3(6x−5)(4x+1)−(8x+3)(9x−2)=2033(6x−5)(4x+1)−(8x+3)(9x−2)=203
⇒3(24x2+6x−20x−5)−(72x2−16x+27x−6)=203⇒3(24x2+6x−20x−5)−(72x2−16x+27x−6)=203
⇒72x2−42x−15−72x2−11x+6=203⇒72x2−42x−15−72x2−11x+6=203
⇒−53x=203−6+15=212⇒−53x=203−6+15=212
⇒x=−4
\(2x-1^3+8\)
\(=2x-9\)
\(=\left(\sqrt{2x}\right)^2-3^2\)
\(=\left(\sqrt{2x}-3\right)\left(\sqrt{2x}+3\right)\)
_________
\(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
_______________
\(8x^3-12x^2+6x-2\)
\(=8x^3-12x^2+6x-1-1\)
\(=\left(2x-1\right)^3-1\)
\(=\left(2x-1-1\right)\left(4x^2-4x+1+2x-1+1\right)\)
\(=\left(2x-2\right)\left(4x^2-2x+1\right)\)
\(=2\left(x-1\right)\left(4x^2-2x+1\right)\)
________
\(9x^3-12x^2+6x-1\)
\(=x^3+8x^3-12x^2+6x-1\)
\(=x^3+\left(2x-1\right)^3\)
\(=\left(x+2x-1\right)\left(x^2-2x^2-x+4x^2-4x+1\right)\)
\(=\left(3x-1\right)\left(3x^2-5x+1\right)\)
b: 8x^3-12x^2+6x-1
=(2x)^3-3*(2x)^2*1+3*2x*1^2-1^3
=(2x-1)^3
c: =(8x^3-12x^2+6x-1)-1
=(2x-1)^3-1
=(2x-1-1)[(2x-1)^2+2x-1+1]
=2(x-1)(4x^2-4x+1+2x)
=2(x-1)(4x^2-2x+1)
a: =x^4-3x^5+4x^8
b: =2x^3+2x^2+4x
c: =4x^2+8x-5
d: =2x+3x^2+7x^4
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)
Đặt \(\sqrt{3x+5}=t\ge0\)
\(\Rightarrow9x^2-3x-t^2-t=0\)
\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
ĐKXĐ: \(x\ge-5\)
\(x^2-3x+2-x-5-\sqrt{x+5}=0\)
Đặt \(\sqrt{x+5}=t\ge0\)
\(\Rightarrow-t^2-t+x^2-3x+2=0\)
\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
a)\(A=x^5-36x^4+37x^3-69x^2+34x+15\)
=\(x^5-35x^4-x^4+35x^3+2x^2-70x^2+x^2-35x+x+15\)
=\(\left(x^4-x^3+x^2+x\right)\left(x-35\right)+x+15\)
=0+35+15=50(do x=35)
b, \(3\left(6x-5\right)\left(4x+1\right)-\left(8x+3\right)\left(9x-2\right)=203\)
\(\Rightarrow3\left(24x^2+6x-20x-5\right)-\left(72x^2-16x+27x-6\right)=203\)
\(\Rightarrow72x^2-42x-15-72x^2-11x+6=203\)
\(\Rightarrow-53x=203-6+15=212\)
\(\Rightarrow x=-4\)
Chúc bạn học tốt!!!
a ) \(4x\left(5x+2\right)-\left(10x-3\right)\left(2x+7\right)=133\)
\(\Leftrightarrow20x^2+8x-\left(20x^2-6x+70x-21\right)=133\)
\(\Leftrightarrow20x^2+8x-20x^2+6x-70x+21=133\)
\(\Leftrightarrow-56x+21=133\)
\(\Leftrightarrow-56x=112\)
\(\Leftrightarrow x=-2\)
Vậy \(x=-2\)
b ) \(3\left(6x-5\right)\left(4x+1\right)-\left(8x+3\right)\left(9x-2\right)=203\)
\(\Leftrightarrow\left(18x-15\right)\left(4x+1\right)-\left(72x^2+27x-16x-6\right)=203\)
\(\Leftrightarrow72x^2-60x+18x-15-72x^2-27x+16x+6=203\)
\(\Leftrightarrow\left(72x^2-72x^2\right)+\left(18x+16x-60x-27x\right)-\left(15-6\right)=203\)
\(\Leftrightarrow-53x-9=203\)
\(\Leftrightarrow-53x=212\)
\(\Leftrightarrow x=-4\)
Vậy \(x=-4\)
\(72x^2-60x+18x-15-72x^2+16x-27x+6=203\)
\(-53x-9=203\)
\(-53x=212\)
\(x=\frac{106}{27}\)