2) Cho đường thẳng (d) : y= -x+2 . Gọi A ; B lần lượt là giao điểm của đường thẳng (d)với hai trụcư tọa độ Ox ; Oy .
a) Tính độ dài OA và OB.
b) Tính chu vi và diện tích của tam giác OAB .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi B là điểm đối xứng A qua d, C là giao điểm của OB và d
\(\Rightarrow AM=BM\)
\(OA+OM+AM=OA+OM+BM\ge OA+OB\)
Dấu "=" xảy ra khi và chỉ khi O, M, B thẳng hàng hay M trùng C
Phương trình đường thẳng d' qua A và vuông góc d có dạng:
\(1\left(x-2\right)+1\left(y-0\right)=0\Leftrightarrow x+y-2=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow D\left(0;2\right)\)
D là trung điểm AB \(\Rightarrow B\left(-2;4\right)\)
Phương trình OB: \(2x+y=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x+y=0\\x-y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=\left(m+2\right)x-2m\Leftrightarrow x^2-\left(m+2\right)x+2m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=\left(m+2\right)^2-8m>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+\left(m+2\right)x_2=12\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+\left(m+2\right)x_2=12\)
\(\Leftrightarrow\left(m+2\right)x_1-2m+\left(m+2\right)x_2=12\)
\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m-12=0\)
\(\Leftrightarrow\left(m+2\right)^2-2m-12=0\)
\(\Leftrightarrow m^2+2m-8=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=2\left(loại\right)\end{matrix}\right.\)
Đáp án B
Cách giải: A B → = - 1 ; - 2 ; 3
d:
x
-
2
1
=
y
-
1
-
2
=
z
-
1
2
có 1 VTCP
v
→
1
;
-
2
;
2
là một VTCP của ∆
∆ là đường thẳng qua A, vuông góc với d => ∆
⊂
(α) mặt phẳng qua A và vuông góc d
Phương trình mặt phẳng (α): 1(x – 3) – 2(y – 2) + 2(z – 1) = 0 ó x – 2y + 2z – 1 = 0
Khi đó, khi và chỉ khi ∆ đi qua hình chiếu H của B lên (α)
*) Tìm tọa độ điểm H:
Đường thẳng BH đi qua B(2;0;4) và có VTCP là VTPT của (α) có phương trình:
=>
<=>
∆ đi qua A(3;2;1), H(1;2;2) có VTCP H A → = 2 ; 0 ; - 1 = u → 2 ; b ; c ; u → = 5
PT giao Ox và Oy: \(y=0\Leftrightarrow x=\dfrac{-\left(k+3\right)}{k+2}\Leftrightarrow A\left(\dfrac{-\left(k+3\right)}{k+2};0\right)\Leftrightarrow OA=\left|\dfrac{k+3}{k+2}\right|\\ x=0\Leftrightarrow y=k+3\Leftrightarrow B\left(0;k+3\right)\Leftrightarrow OB=\left|k+3\right|\)
Áp dụng định lí Pytago: \(AB^2=OA^2+OB^2\)
\(AB^2=\dfrac{\left(k+3\right)^2}{\left(k+2\right)^2}+\left(k+3\right)^2=\dfrac{2\left(k+3\right)^2}{\left(k+2\right)^2}\\ \Leftrightarrow AB=\dfrac{\sqrt{2}\left|k+3\right|}{\left|k+2\right|}=2\sqrt{2}\\ \Leftrightarrow\dfrac{\left|k+3\right|}{\left|k+2\right|}=2\Leftrightarrow\left|k+3\right|=2\left|k+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}k+3=-2k-4\\k+3=2k+4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k=-\dfrac{7}{3}\\k=-1\end{matrix}\right.\)
Vậy ...
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
a: Tạo độ A là:
\(\left\{{}\begin{matrix}y=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-x=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-0+2=2\end{matrix}\right.\)
Vậy: O(0;0); A(2;0); B(0;2)
\(OA=\sqrt{\left(2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2}=2\)
\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{2^2}=2\)
b: \(AB=\sqrt{\left(0-2\right)^2+\left(2-0\right)^2}=\sqrt{2^2+2^2}=2\sqrt{2}\)
Chu vi tam giác OAB là:
\(C_{OAB}=OA+OB+AB=4+2\sqrt{2}\)
Ta có: Ox\(\perp\)Oy
=>OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot AO\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)