K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

a: Tạo độ A là:

\(\left\{{}\begin{matrix}y=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-x=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-0+2=2\end{matrix}\right.\)

Vậy: O(0;0); A(2;0); B(0;2)

\(OA=\sqrt{\left(2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2}=2\)

\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{2^2}=2\)

b: \(AB=\sqrt{\left(0-2\right)^2+\left(2-0\right)^2}=\sqrt{2^2+2^2}=2\sqrt{2}\)

Chu vi tam giác OAB là:

\(C_{OAB}=OA+OB+AB=4+2\sqrt{2}\)

Ta có: Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot AO\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)

NV
14 tháng 7 2021

Gọi B là điểm đối xứng A qua d, C là giao điểm của OB và d

\(\Rightarrow AM=BM\)

\(OA+OM+AM=OA+OM+BM\ge OA+OB\)

Dấu "=" xảy ra khi và chỉ khi O, M, B thẳng hàng hay M trùng C

Phương trình đường thẳng d' qua A và vuông góc d có dạng:

\(1\left(x-2\right)+1\left(y-0\right)=0\Leftrightarrow x+y-2=0\)

Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow D\left(0;2\right)\)

D là trung điểm AB \(\Rightarrow B\left(-2;4\right)\)

Phương trình OB: \(2x+y=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x+y=0\\x-y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)

10 tháng 2 2021

kiểm tra lại đề nhé lỗi quá

NV
22 tháng 4 2021

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=\left(m+2\right)x-2m\Leftrightarrow x^2-\left(m+2\right)x+2m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=\left(m+2\right)^2-8m>0\)

\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+\left(m+2\right)x_2=12\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+\left(m+2\right)x_2=12\)

\(\Leftrightarrow\left(m+2\right)x_1-2m+\left(m+2\right)x_2=12\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m-12=0\)

\(\Leftrightarrow\left(m+2\right)^2-2m-12=0\)

\(\Leftrightarrow m^2+2m-8=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=2\left(loại\right)\end{matrix}\right.\)

16 tháng 9 2018

Đáp án B

Cách giải:  A B → = - 1 ; - 2 ; 3

d:  x - 2 1 = y - 1 - 2 = z - 1 2  có 1 VTCP  v → 1 ; - 2 ; 2  là một VTCP của 
 
∆ là đường thẳng qua A, vuông góc với d => ∆ ⊂ (α) mặt phẳng qua A và vuông góc d

Phương trình mặt phẳng (α): 1(x – 3) – 2(y – 2) + 2(z – 1) = 0 ó x – 2y + 2z – 1 = 0

Khi đó,  khi và chỉ khi ∆ đi qua hình chiếu H của B lên (α)

*) Tìm tọa độ điểm H:

Đường thẳng BH đi qua B(2;0;4) và có VTCP là VTPT của (α) có phương trình:

=> 

<=>

∆ đi qua A(3;2;1), H(1;2;2) có VTCP  H A → = 2 ; 0 ; - 1 = u → 2 ; b ; c ; u → = 5

10 tháng 12 2021

PT giao Ox và Oy: \(y=0\Leftrightarrow x=\dfrac{-\left(k+3\right)}{k+2}\Leftrightarrow A\left(\dfrac{-\left(k+3\right)}{k+2};0\right)\Leftrightarrow OA=\left|\dfrac{k+3}{k+2}\right|\\ x=0\Leftrightarrow y=k+3\Leftrightarrow B\left(0;k+3\right)\Leftrightarrow OB=\left|k+3\right|\)

Áp dụng định lí Pytago: \(AB^2=OA^2+OB^2\)

\(AB^2=\dfrac{\left(k+3\right)^2}{\left(k+2\right)^2}+\left(k+3\right)^2=\dfrac{2\left(k+3\right)^2}{\left(k+2\right)^2}\\ \Leftrightarrow AB=\dfrac{\sqrt{2}\left|k+3\right|}{\left|k+2\right|}=2\sqrt{2}\\ \Leftrightarrow\dfrac{\left|k+3\right|}{\left|k+2\right|}=2\Leftrightarrow\left|k+3\right|=2\left|k+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}k+3=-2k-4\\k+3=2k+4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k=-\dfrac{7}{3}\\k=-1\end{matrix}\right.\)

Vậy ...

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS