Tính \(-\sqrt{0,1}.\sqrt{0,4}\) kết quả là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{\left(0,1\right)^2}=\left|0,1\right|=0,1\)do \(0,1>0\)
b, \(\sqrt{\left(-0,3\right)^2}=\sqrt{\left(0,3\right)^2}=\left|0,3\right|=0,3\)do \(0,3>0\)
c, \(-\sqrt{\left(-1,3\right)^2}=-\sqrt{\left(1,3\right)^2}=-\left|1,3\right|=-1,3\)do \(1,3>0\)
d, \(-0,4\sqrt{\left(-0,4\right)^2}=-0,4\sqrt{\left(0,4\right)^2}=-0,4.\left|0,4\right|=-0,4.0,4=-0,14\)
do \(0,4>0\)
\(\sqrt{\left(0,1\right)^2}=\left|0,1\right|=0,1\)
\(\sqrt{\left(-0,3\right)^2}=\left|-0,3\right|=0,3\)
\(-\sqrt{\left(-1,3\right)^2}=-\left|-1,3\right|=-1,3\)
\(-0,4\sqrt{\left(-0,4\right)^2}=-0,4\cdot\left|-0,4\right|=-0,16\)
a) \({4^6}.\sqrt {0,1} = 1295,2689\)
b) \(\sqrt[8]{{2,{1^{18}} + 1}} - \sqrt {2,{1^{12}} + 1} = - 80,4632\)
c) \(\frac{{1,{5^3}}}{{\sqrt[3]{{6,8}}}} = 1,7814\)
\(\sqrt{17-\sqrt{33}}\cdot\sqrt{17+\sqrt{33}}\)
\(=\sqrt{17^2-\left(\sqrt{33}\right)^2}\)
\(=\sqrt{289-33}=\sqrt{256}=16\)
\(\sqrt{7-2\sqrt{12}}=\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
=> Chọn C
\(-\sqrt{0,1}\cdot\sqrt{0,4}=-\sqrt{0,1\cdot0,4}=-\sqrt{0,04}=-0,2\)