K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Với mọi \(k\in N\)ta có :

\(\frac{1}{\sqrt{k-1}+\sqrt{k}}=\frac{\sqrt{k-1}-\sqrt{k}}{\left(\sqrt{k-1}+\sqrt{k}\right)\left(\sqrt{k-1}-\sqrt{k}\right)}=\frac{\sqrt{k-1}-\sqrt{k}}{\left(k-1\right)-k}=\sqrt{k-1}-\sqrt{k}\)

Áp dụng ta được :

\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+....+\sqrt{n}-\sqrt{n-1}\)

\(=\sqrt{n}-1\)

12 tháng 8 2017

\(A=-\sqrt{n}-1\) mà bạn Đinh Đức Hùng

28 tháng 11 2020

\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}\)\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\)

\(A=\sqrt{n}-\sqrt{1}\)

\(B=\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)

\(B=-\left(\sqrt{1}+\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-...-\sqrt{24}+\sqrt{25}\)

\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)

\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)

\(B=-6-2\sqrt{2}-2\sqrt{3}-...-2\sqrt{24}\)

29 tháng 11 2020

ta có \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}=\frac{\sqrt{1}-\sqrt{2}}{1-2}=\sqrt{1}-\sqrt{2}\)

mấy cái kia cũng thế a

\(=>A=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-2\right)+...+\left(\sqrt{n}-\sqrt{n-1}\right)\)=>A= căn n -1

9 tháng 6 2017

sao ko hiển thị trả lời

26 tháng 2 2022

Xét hạng tổng quát:

\(\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}=\frac{\sqrt{n}-\sqrt{n-1}}{n-n+1}=\sqrt{n}-\sqrt{n-1}\)

Áp dụng vào bài, ta có:

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(=\sqrt{n}-1\)

7 tháng 9 2018

\(A=\frac{\sqrt{2}-1}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\)\(\Leftrightarrow A=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\) 

\(\Leftrightarrow A=\sqrt{n}-1\)

10 tháng 8 2015

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+......+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+......+\frac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\)\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+......+\frac{\sqrt{n-1}-\sqrt{n}}{n-1-n}\)

=\(-\left(\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+......+\sqrt{n-1}-\sqrt{n}\right)=-\left(1-\sqrt{n}\right)=\sqrt{n}-1\)

DD
5 tháng 12 2020

\(\frac{1}{\sqrt{2k+1+2\sqrt{k^2+k}}}=\frac{1}{\sqrt{k+1+2\sqrt{k\left(k+1\right)}+k}}=\frac{1}{\sqrt{k+1}+\sqrt{k}}\)

\(=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)

Do đó ta có: 

\(A=\frac{1}{\sqrt{3+2\sqrt{2}}}+...+\frac{1}{\sqrt{2n+1+2\sqrt{n^2+n}}}\)

\(A=\sqrt{2}-\sqrt{1}+...+\sqrt{n+1}-\sqrt{n}\)

\(A=\sqrt{n+1}-1\)

Với \(n=2018\)ta có: \(A=\sqrt{2019}-1\).