Rút gọn : \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}\)\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\)
\(A=\sqrt{n}-\sqrt{1}\)
\(B=\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)
\(B=-\left(\sqrt{1}+\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-...-\sqrt{24}+\sqrt{25}\)
\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)
\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)
\(B=-6-2\sqrt{2}-2\sqrt{3}-...-2\sqrt{24}\)
ta có \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}=\frac{\sqrt{1}-\sqrt{2}}{1-2}=\sqrt{1}-\sqrt{2}\)
mấy cái kia cũng thế a
\(=>A=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-2\right)+...+\left(\sqrt{n}-\sqrt{n-1}\right)\)=>A= căn n -1
Xét hạng tổng quát:
\(\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}=\frac{\sqrt{n}-\sqrt{n-1}}{n-n+1}=\sqrt{n}-\sqrt{n-1}\)
Áp dụng vào bài, ta có:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(=\sqrt{n}-1\)
\(A=\frac{\sqrt{2}-1}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\)\(\Leftrightarrow A=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)
\(\Leftrightarrow A=\sqrt{n}-1\)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+......+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+......+\frac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\)\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+......+\frac{\sqrt{n-1}-\sqrt{n}}{n-1-n}\)
=\(-\left(\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+......+\sqrt{n-1}-\sqrt{n}\right)=-\left(1-\sqrt{n}\right)=\sqrt{n}-1\)
\(\frac{1}{\sqrt{2k+1+2\sqrt{k^2+k}}}=\frac{1}{\sqrt{k+1+2\sqrt{k\left(k+1\right)}+k}}=\frac{1}{\sqrt{k+1}+\sqrt{k}}\)
\(=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)
Do đó ta có:
\(A=\frac{1}{\sqrt{3+2\sqrt{2}}}+...+\frac{1}{\sqrt{2n+1+2\sqrt{n^2+n}}}\)
\(A=\sqrt{2}-\sqrt{1}+...+\sqrt{n+1}-\sqrt{n}\)
\(A=\sqrt{n+1}-1\)
Với \(n=2018\)ta có: \(A=\sqrt{2019}-1\).
Với mọi \(k\in N\)ta có :
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}=\frac{\sqrt{k-1}-\sqrt{k}}{\left(\sqrt{k-1}+\sqrt{k}\right)\left(\sqrt{k-1}-\sqrt{k}\right)}=\frac{\sqrt{k-1}-\sqrt{k}}{\left(k-1\right)-k}=\sqrt{k-1}-\sqrt{k}\)
Áp dụng ta được :
\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+....+\sqrt{n}-\sqrt{n-1}\)
\(=\sqrt{n}-1\)
\(A=-\sqrt{n}-1\) mà bạn Đinh Đức Hùng