tìm x
1/2=2/3+2x=1/2
Giúp mình đang cần gấp
Cảm ơn các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT có 2 nghiệm `<=> \Delta' >=0`
`<=> 4(2m+3)^2 -4(4m^2-3) >=0`
`<=>16m^2+48m+36-16m^2+12>=0`
`<=>m >= -1`
Viet: `{(x_1+x_2=-2m-3),(x_1x_2=4m^2-3):}`
Theo đề: `x_1^2+x_2^2=1/2`
`<=>(x_1+x_2)^2-2x_1x_2=1/2`
`<=>(-2m-3)^2 -2(4m^2-3)=1/2`
`<=>-4m^2+12m+15=1/2`
`<=>` \(\left[{}\begin{matrix}m=\dfrac{6+\sqrt{94}}{4}\left(TM\right)\\m=\dfrac{6-\sqrt{94}}{4}\left(L\right)\end{matrix}\right.\)
Vậy....
\(|-2x+1,5|=\dfrac{1}{4}\Rightarrow-2x+1,5=\pm\dfrac{1}{4}\)
\(-2x+1,5=\dfrac{1}{4}\Rightarrow-2x=1,5-0,25\Rightarrow-2x=1,25\Rightarrow x=1,25:\left(-2\right)\Rightarrow x=...\)
\(-2x+1,5=-\dfrac{1}{4}\Rightarrow-2x=-0,25-1,5\Rightarrow-2x=1,75\Rightarrow x=1,75:\left(-2\right)\Rightarrow x=...\)
\(\dfrac{3}{2}-|1.\dfrac{1}{4}+3x|=\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{3}{2}-\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{5}{4}\)
\(\Rightarrow1.\dfrac{1}{4}+3x=\pm\dfrac{5}{4}\)
\(1.\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow3x=\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=1\Rightarrow x=3\)
\(1.\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow3x=-\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=-\dfrac{3}{2}x=...\)
a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.
b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.
Lời giải:
a.
$|4x-1|-|3x-\frac{1}{2}|=0$
$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)
b. Nếu $x\geq 1$ thì:
$|x-1|-2x=\frac{1}{2}$
$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$
$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)
Nếu $x< 1$ thì:
$1-x-2x=\frac{1}{2}$
$\Leftrightarrow x=\frac{1}{6}$ (tm)
a: ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)
\(a,50\%x-0,2+x=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}x-0,2+x=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}x+x=\dfrac{4}{5}+0,2\)
\(\Leftrightarrow\dfrac{3}{2}x=\dfrac{4}{5}+\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{3}{2}x=1\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
\(b,\left(x-\dfrac{3}{4}\right):\dfrac{1}{2}+\dfrac{3}{2}=\dfrac{25}{2}\)
\(\Leftrightarrow\left(x-\dfrac{3}{4}\right).2=\dfrac{25}{2}-\dfrac{3}{2}\)
\(\Leftrightarrow\left(x-\dfrac{3}{4}\right).2=\dfrac{22}{2}\)
\(\Leftrightarrow x-\dfrac{3}{4}=11:2\)
\(\Leftrightarrow x=\dfrac{11}{2}+\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{25}{4}\)
\(-2\left(2x-7\right)^2=2\)
\(\Rightarrow\left(2x-7\right)^2=-4\)
Mà: \(\left(2x-7\right)^2\ge0\)
=> Ko có giá trị x cần tìm
ta có \(\frac{2}{3}+2x=\frac{1}{2}\)
<=>\(2x=\frac{1}{2}-\frac{2}{3}\)
<=>\(2x=\frac{3}{6}-\frac{4}{6}\)
<=>\(2x=-\frac{1}{6}\)
<=>\(x=-\frac{1}{6}:2\)
<=>\(x=-\frac{1}{12}\)
Vậy \(x=-\frac{1}{12}\)