Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
a) 16(4x+5)2 - 25(2x+2)2
\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)
\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)
\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)
\(=\left(26x+30\right)\left(6x+10\right)\)
\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)
\(c,\left(x+1\right)^4-\left(x-1\right)^4\)
\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)
\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)
\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)
\(=\left(2x^2+2\right)2x.2\)
\(=4x.2\left(x^2+1\right)\)
\(=8x\left(x^2+1\right)\)
\(x^2-3x+xy-3y\)
\(=\left(x^2+xy\right)-\left(3x+3y\right)\)
\(=x.\left(x+y\right)-3.\left(x+y\right)\)
\(=\left(x-3\right).\left(x+y\right)\)
\(2x^2-x+2xy-y\)
\(=2x^2-\left(x-2xy+y\right)\)
\(=2x^2-\left(x-y\right)^2\)
\(=\left(\sqrt{2}x\right)^2-\left(x-y\right)^2\)
\(=\left(\sqrt{2}x-x+y\right).\left(\sqrt{2}x+x-y\right)\)
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x.\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left(x^2+1+x\right)\)
\(16+2xy-x^2-y^2\)
\(=16-x^2+2xy-y^2\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=[4-\left(x-y\right)].[4+\left(x-y\right)]\)
\(=\left(4-x+y\right).\left(4+x-y\right)\)
1) a) \(x^3-2x^2y+xy^2-25x=x\left(x^2-2xy+y^2-25\right)\)
\(=x\left[\left(x-y\right)^2-5^2\right]=x\left(x-y-5\right)\left(x-y+5\right)\)
b)\(x^2-y^2-2x-2y=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-1-y-1\right)\left(x-y+y+1\right)=\left(x-y-2\right)\left(x+1\right)\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a) Xét mẫu của phân thức là \(x^2+2y^2+1\), ta có \(x^2\ge0;2y^2\ge0\Leftrightarrow x^2+2y^2\ge0\Leftrightarrow x^2+2y^2+1\ge1>0\)
Như vậy mẫu của phân thức không chỉ khác 0 mà thậm chí còn lớn hơn 0 nên ta không cần điều kiện của \(x,y\)
b) Điều kiện xác định \(\left(x-1\right)^2+\left(y+2\right)^2\ne0\)
Ta thấy \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Nếu \(\left(x-1\right)^2+\left(y+2\right)^2=0\)thì \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Như vậy để phân thức đã cho xác định khi \(\hept{\begin{cases}x\ne1\\y\ne-2\end{cases}}\)
a: ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)
bạn có thể ghi ra đầy đủ các cách đc ko