K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

19 \(\times\)... . > 194

      ...     > \(\dfrac{194}{19}\)

       .

 

12 tháng 12 2023

Dễ , 19 × 11 > 194

8 tháng 5 2018

Ta có: \(C=\frac{3x^2-7x^2-12+45}{3x^3-19x^2+33x-9}\)    ĐKXĐ: x khác 3, 1/3 

\(=\frac{\left(x-3\right)^2\left(2x+5\right)}{\left(x-3\right)^2\left(3x-1\right)}\) 

\(=\frac{2x+5}{3x-1}\)

Để C>0, ta có:

-5/2<x<1/3 (thỏa mãn ĐKXĐ) 

8 tháng 5 2018

Bạn xem lại cái đề bài đi :))))) 

6 tháng 9 2017

997+37997+3749+194

=994+3+37997+3743+6+194

=994+(3+37997)+3743+(6+194)

=994+38000+3743+200

=38994+3943

=38994+1006+2937

=(38994+1006)+2937

=40000+2937

=42937

22 tháng 3 2020

2 tháng 5 2019

Ta có:\(x=18\Rightarrow\hept{\begin{cases}x+1=19\\-x-1=-19\end{cases}}\)

Thay vào BT D ta được:

\(D=x^{12}+\left(-x-1\right)x^{11}+\left(x+1\right)x^{10}+\left(-x-1\right)x^9+...+\left(x+1\right)x^2+\left(-x-1\right)x+1\)

     \(=x^{12}-x^{12}-x^{11}+x^{11}+x^{10}-x^{10}-x^9+...+x^3+x^2-x^2-x+1\)

      \(=1-x\)

19 tháng 11 2021
Jekjekejekdjesysuwhdkfjehdufyehdihefutckehfkejfjfjfjtjfirjiftkdyvcbdu zvfhcg jtufudugguxjfuchhguvxkgfhvteuưjuxstjfyu
19 tháng 11 2021

jhk e ư.x.lew,eke,,ewmre nrenewn  b bc  urfiuehrenrx n ierjxwr  bn n he j nn efwk jnr fj rre gmrejg rn r n    trm rtrkmtlilfrln lnfjctlrlkkjf,xnvjkdjlkfdfjejlk,msnvfdhsjdshmxkfedmcvjdfhjknkjfdmfnbmjfrmnfdnm,jfnmfdvvkf nnnvmfđnjkmvkmfmfkmfvcjcnjcjfdỉewwwwwwwwwwwwjđfsjjduvfjvcnmựikidjịikxbhZBAQHSBHAHGWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWjfiurigfhrfmd

16 tháng 8 2018

a, mk làm đáp án luôn đó

B=(2x+5)/(3x-1)

b,Để B>0 thì 2x+5 và 3x-1 phải cùng dấu 

=> : x khác 0;-1;-2

19 tháng 4 2018

\(B=\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(=\dfrac{2x^3+5x^2-12x^2-30x+18x+45}{3x^3-x^2-18x^2+6x+27x-9}\)

\(=\dfrac{\left(2x^3+5x^2\right)-\left(12x^2+30x\right)+\left(18x+45\right)}{\left(3x^3-x^2\right)-\left(18x^2-6x\right)+\left(27x-9\right)}\)

\(=\dfrac{x^2\left(2x+5\right)-6x\left(2x+5\right)+9\left(2x+5\right)}{x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)}\)

\(=\dfrac{\left(2x+5\right)\left(x^2-6x+9\right)}{\left(3x-1\right)\left(x^2-6x+9\right)}\)

\(=\dfrac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}\)

ĐKXĐ : \(\left\{{}\begin{matrix}3x-1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{1}{3}\\x\ne3\end{matrix}\right.\)

\(a,B=\dfrac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\dfrac{2x+5}{3x-1}\)

b,Để \(B>0\)

\(\Leftrightarrow\dfrac{2x+5}{3x-1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+5>0\\3x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+5< 0\\3x-1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x>\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< -\dfrac{5}{2}\\x< \dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< -\dfrac{5}{2}\end{matrix}\right.\) thì B > 0

19 tháng 4 2018

a) ĐKXĐ:\(x\ne\dfrac{1}{3};x\ne3\)

\(B=\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(B=\dfrac{\left(2x^3-12x^2+18x\right)+\left(5x^2-30x+45\right)}{\left(3x^3-18x^2+27x\right)-\left(x^2-6x+9\right)}\)

\(B=\dfrac{2x\left(x^2-6x+9\right)+5\left(x^2-6x+9\right)}{3x\left(x^2-6x+9\right)-\left(x^2-6x+9\right)}\)

\(B=\dfrac{\left(2x+5\right)\left(x^2-6x+9\right)}{\left(3x-1\right)\left(x^2-6x+9\right)}\)

\(B=\dfrac{2x+5}{3x-1}\)

b) Để \(B>0\Leftrightarrow\dfrac{2x+5}{3x-1}>0\Leftrightarrow2x+5\)\(3x-1\) cùng dấu

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+5>0\\3x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+5< 0\\3x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{-5}{2}\\x>\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{-5}{2}\\x< \dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< -\dfrac{5}{2}\end{matrix}\right.\)